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Summary

The recent explosion in digital video storage and delivery has presented strong moti-
vations for high performance video compression solutions. Coupling this with the growing
heterogeneity of user and network requirements, there is also a pressing need for a more flex-
ible video compression framework that can support a “generate once, scale many” concept.
The challenge remains as how one common scalable video bit stream can simultaneously
satisfy the disparate requirements on bandwidth, display resolution, processing complexity,
and viewers’ preferences.

Over the past decade, the success of wavelets in solving many difficult problems has
contributed to its unprecedented popularity among many research and development com-
munities, ranging from mathematics and computer science to physics and engineering. Mul-
tiwavelets, as an extension to wavelets with only one basis, have also generated significant
interest as they promise the potential to construct better multifilters with desirable prop-
erties and lower computation complexity. The challenge still remains as what constitutes

good multiwavelets and how they can be constructed and applied easily.

This dissertation sets out to investigate the above open problems and propose solutions
to them. On the one hand, we will formulate a definition of good multiwavelets, provide
a systematic means for the construction of multiwavelets, and then present a generalized
framework for their application to multiresolution signal analysis and synthesis. On the
other hand, we will also look into a multi-scalable video compression architecture that will
help realize a “generate once, scale many” concept. In particular, we will integrate the mul-
tiwavelet framework with multiresolution motion compensation to generate a compressed
video bit stream that is sufficiently flexible to support simultaneous video scalability in

terms of bit rate, distortion, frame rate, color, and spatial resolution.



Chapter 1

Introduction

“Thousands of candles can be lighted from a single candle, and the life of the
candle will not be shortened. Happiness never decreases by being shared.”

Siddhartha Gautama Buddha (563 - 483 B.C.)

1.1 Video Compression, Scalability, and Wavelets

One of the biggest problems that plagues the proliferation of digital technology is known as
digital obesity, which is manifested as the voluminous amount of bits generated. Consider,
for example, a typical NTSC color video frame, with 720 pixels x 480 lines, 24 bits per
pixel, and 30 frames per second. This will need a transmission capacity of a whopping
237 Mbps. Without any compression, a compact disc with a storage capacity of about 650
Mbytes can store only approximately 20 seconds of NTSC video! Furthermore, full motion
playback is impractical even over typical high-bandwidth connections (between 300 kbps
and 1.5 Mbps). As a result, the need for good video compression algorithms is becoming
more pressing as the demands for rich media applications continue to grow.

However, merely having a powerful compression scheme may not be the complete
solution to some applications such as image database browsing, video-on-demand, and video
communication over heterogeneous networks. In these situations, other properties such as

the ability to support progressive transmission, scaling for a desired spatial resolution, frame
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rate and/or bit rate, and controlling end-to-end delays in interactive applications, are fast
becoming indispensible features for a good and comprehensive compression system. In
general, such applications have a point-to-multipoint (multicast or broadcast) relationship
in which only a few service providers cater to a wide pool of different potential users. Since
different users may have disparate requirements and limitations, constraints on bit rate,
display resolution, playback frame rate, and decoding complexity, cannot be anticipated
in advance during compression. For example, by transmitting only the most-constrained
bit rate will unfairly penalize high-bandwidth receivers as they are underutilizing their
networks’ capabilities. On the other hand, generating the maximum possible bit rate will
cause low-bandwidth paths to become congested and receivers to get choked and stalled.
This motivates the need for a highly scalable video compression system that supports
a “generate-once, scale-many” concept, which can address the challenges of bandwidth
heterogeneity and client diversity.

The growing demand for better and more flexible digital image and video compres-
sion algorithms continues to fuel many separate threads of research and development in
both proprietary and standard-based multimedia compression frameworks. International
standards such as JPEG, JPEG-2000, MPEG-1, MPEG-2, and MPEG-4 have been devel-
oped into efficient commercial software as well as dedicated hardware chipsets. In addition,
some ongoing standardization efforts have been focusing on an all-encompassing multimedia
framework. For example, MPEG-7 (formally known as “Multimedia Content Description
Interface”) aims to create a standard for describing the multimedia content data that will
support a certain degree of interpretation of the information’s meaning for convenient dig-
ital processing later. On the other hand, MPEG-21 is the most recent initiative to define
a multimedia framework to enable transparent (interoperable) and augmented use (e.g.
automation) of multimedia resources across a wide range of networks and devices used by
different communities along a multimedia content delivery chain that encompasses content
creation, production, delivery, and consumption.

Almost all the above standards use the discrete cosine transform (DCT) as the basis

for frequency-based compression methods. However, newer international standards such
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as MPEG-4 and JPEG-2000 may have profiles that support wavelet-based compression.
In fact, wavelet-based compression has generated considerable interest among various re-
search communities, ranging from applied mathematics to computer science and engineer-
ing. Recent breakthroughs in wavelet-based compression have demonstrated the promising

future of wavelets in many real-world applications!

. Such achievements have spawned a
whole array of new commercial compression solutions such as Intel Indeo, Summus’ Dy-
namic Wavelets, Aware’s Wavelet Video, Real Networks’ G2, PrimaCorp’s SPTHT, Ricoh’s
CREW, Compression Engines’ WIF, and Infinop’s Lightning Strike, among others. As re-
search in wavelets matures, extensions from scalar wavelets to multiwavelets (i.e. more than
one wavelet basis function) have also been gathering momentum in both basic research and
engineering applications, with the potential of improved compression efficiency and reduced
implementation complexity. Multiwavelets have created new opportunities as well as many

open problems that warrant more in-depth research and development; some of these issues

will be the focus of this dissertation.

1.2 Organization of the Thesis

This thesis is organized into six main chapters, including this first chapter which motivates
the demand for efficient and scalable digital image and video compression methods to
meet the growing number of heterogeneous multiparty and disparate network environments.
The success of applying wavelet-based techniques to image and video compression is also
evident from its pervasive research activities worldwide, and the proliferation of wavelet-

based commercial products.

Chapter 2 discusses the theory and applications of multiwavelets. Two new concepts —
equivalent scalar filter bank system, and good multifilter properties are introduced — first
to establish the relationship between a multiwavelet system and a set of equivalent scalar
wavelets, and then to design and construct multiwavelet filters with desirable properties

for image and video compression applications. This is followed by the design and con-

Wavelet-based methods have been shown to be superior to many traditional approaches in areas such

as signal classification, system modelling, image analysis and enhancement, signal denoising, etc.
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struction of two previously unpublished classes of symmetric-antisymmetric orthonormal
and biorthogonal multiwavelets that possess good multifilter properties. We then inves-
tigate the problem of multiwavelet initialization (or pre-filtering) and propose a new and
generalized framework for multiresolution analysis and synthesis via discrete multiwavelet
decomposition and reconstruction algorithms. Extensive image compression results are

shown to verify the usefulness and efficiency of the proposed ideas and framework.

Chapter 3 focuses on video scalability, in which the importance of various types of
desirable video scaling parameters are first reviewed in the context of generating a com-
mon scalable video bit stream that can simultaneously support disparate users, computing
capabilities, and networking facilites. Some research and implementation issues such as
error propagation in bit rate scaling, loss of prediction loop in spatial resolution scaling,
and temporal hierarchy structure for supporting frame rate scaling, are investigated and
solutions proposed. We also describe the details of the composition and organization of the
scalable video bit stream to better understand how different combinations and degrees of

video scalability can be supported and implemented.

Chapter 4 looks into an important and integral part of almost all video coding tech-
niques: interframe motion estimation and compensation. We first review a few motion
estimation methods in general, but with special focus on the popular block-based motion
matching algorithms. In this dissertation, we propose a novel block matching technique
called “unrestricted center-biased diamond search (UCBDS)” for fast, accurate, and robust
motion estimation. We further show how to integrate the UCBDS strategy for multiresolu-
tion interframe motion compensation in the (multi)wavelet domain — a key component for
supporting spatial resolution scalability. Theoretical analysis and elaborate experimental
simulations are presented to verify the efficiency and effectiveness of UCBDS against other
fast block matching algorithms. Results on the performance of multiscale wavelet-based
UCBDS are also discussed.

Chapter 5 combines the various new ideas on multiwavelet filter design and construc-
tion, generalized discrete multiwavelet transforms, scalable video architecture, and mul-

tiscale fast block matching in the wavelet domain, to propose a novel video compression
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platform for highly scalable video coding and communications. The algorithms employ a
“segmented overlay mapping with divide-and-conquer” strategy to effectively exploit the
various types of redundancies present in multiwavelet-transformed video frames. The de-
tails of both the scalable video encoding and decoding algorithms are explained with the
help of block diagrams and psuedocodes. The fine granularity of the proposed highly scal-
able video compression architecture is then illustrated with the help of some examples.
Experimental simulations as well as practical video communication systems employing the

proposed multi-scalable video compression platform are presented and discussed.

Chapter 6 concludes the dissertation with some suggestions on future research and
development directions. The appendices that follow consist of proofs of some theorems
and propositions presented in earlier chapters, as well as examples of a few families of
orthonormal and biorthogonal multiwavelet filters. Finally the bibliographies are listed:
the first section comprises publications which we have authored, and the second section
consists of a comprehensive reference of publications and Internet sites that are pertinent

to the dissertation.



Chapter 2

Multiwavelets, Filter Design, and

Applications

“Holding on to anger is like grasping a hot coal with the intent of throwing it
at someone else; you are the one who gets burned.”

Siddhartha Gautama Buddha (563 - 483 B.C.)

2.1 Introduction

The recent spate of activities in wavelets and multiwavelets provide good indications of
the importance and potential impact of wavelet-based technology in solving many practical
application problems. In particular, the study of multiwavelets as an extension of scalar
wavelets has received considerable attention from the wavelets research communities both
for theoretical development [43, 48, 49] as well as for applications such as signal compres-
sion and denoising [11, 107, 116, 121]. It was also shown in [33, 43] that multiwavelets offer
simultaneous linear-phase symmetry, orthonormality, compact support, and approximation
order k£ > 1, which is not possible with any real-valued scalar 2-channel wavelet systems.
However, these desirable properties of multiwavelets come with a number of open prob-
lems ranging from the design and construction of good multiwavelets to the application of

multiwavelets for vector-valued discrete-time signal analysis and synthesis.
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This chapter focuses on some latest developments of multiwavelet filter design, con-
struction, and applications to image and video compression. It is organized into three
main sections. Section 2.2 first presents some preliminaries to the theory of multiwavelets.
The basic definitions of multiresolution analysis, perfect reconstruction conditions of the
associated matrix filter banks, and the requirement of the transition operator to satisfy
“Condition E” are briefly reviewed. Section 2.3 introduces some new ideas in the design
and construction of multiwavelet filters (or multifilters). The input-output filtering rela-
tionships between a multifilter system and a proposed concept of equivalent scalar filter
bank system are established and explained. This subsequently leads to a new notion, which
we called “good multifilter properties” (GMPs), to help us better understand the desirable
filter characteristics of a useful multifilter system for image and video compression. We then
introduce the construction of two novel classes of symmetric-antisymmetric multiwavelets
that possess GMPs; both families of orthonormal and biorthogonal multiwavelets are pre-
sented. Section 2.4 further investigates a very important topic for the successful application
of multiwavelet filters for signal decomposition and reconstruction. A fundamental problem
called multiwavelet initialization or pre-filtering, which aims to generate vectorized inputs
from a given (scalar) signal, is scrutinized. A new, efficient, and general multiwavelet
transform framework is then proposed to address the shortcomings. Section 2.5 presents
some experimental results to highlight how multiwavelets with GMPs that employ the pro-
posed multiwavelet transform framework can achieve improved compression performance
with lower computational complexity. Finally, Section 2.6 concludes this chapter with a

discussion.
Notation.

Bold-faced characters are used to denote vectors and matrices. The matrices P, P*, and
P! denote respectively the transpose, conjugate transpose, and the inverse of a matrix P.
In addition, P* denotes the similarity transformation of P using an orthogonal matrix U’
that is, P¥ = UPU~"'. Symbols I and 0 denote the identity and zero matrices respectively.

For a given function f, fwill denote its Fourier transform. For brevity, we will express the
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eigenvector of an operator A corresponding to an eigenvalue A as the A-eigenvector of A.
Also, j will denote v/—1. The following orthogonal matrices will also be used throughout

for ease of exposition:

2.2 Preliminaries of Multiwavelet Theory

This section presents some basic theories of multiwavelets and related multifilters (or matrix
filters) that are relevant to our development. For a more complete and rigorous treatment,
interested readers can refer to [48, 49]. In this section, we will review some basic properties
of a biorthogonal multiwavelet with multiplicity r (where 7 is any positive integer), and

counsisting of only two subband channels: lowpass and highpass.

A biorthogonal multiwavelet system (BMWS) consists of two scaling function vectors
— the primal scaling function vector, ® = [¢1,...,¢,]7, and the dual scaling function
vector, o= [51, el (Zr]T — that satisfy the matriz refinement equations (MRE):

B(z) = V2) Hyp®(2z - k), (2.1)

keZ

B(z) = V2> Hp®(2z - k), (2.2)

kEZ
for some finitely supported matrix sequences H := {H}}rcz and H = {ﬁk}kez- Asso-
ciated with the pair of biorthogonal scaling vectors, ® and :1;, is a pair of biorthogonal
function vectors, ¥ = [¢1,...,%,]" and U= [1,/;17 . ,{/IT]T, that are related to the multi-
scaling functions via the following equations:

() = V2> Gp®(2x - k), (2.3)

kEZ

¥(z) = V2) Gp®(2z —k), (2.4)

kEZ
G := {Gy}rez and G = {ék}kez are some finitely supported matrix sequences related to
{H}} and {H}}. The component functions of ¥ and ¥ are referred to as multiwavelets

or multiwavelet functions. For a two-channel multiwavelet system, the matrix sequences
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{H}} and {ﬁk} are termed as matriz lowpass filters or lowpass multifilters, while {Gy}
and {ék} are called the matriz highpass filters or highpass multifilters.
Let Vy and 170 be the closed subspaces generated by the integer shifts of ¢; and gi,i =

1,...,r, respectively, such that

Vo = span{¢i(.—k):ke€Z,i=1,...,r},

Vo span{gi(.—k):kEZ,izl,...,r}.

For each fixed ¢ € Z, we define the subspaces V; and 17g by
Ve={f"):feW}, Ve={f2"):f€eV}

A biorthogonal multiresolution analysis (MRA) is generated by a pair of sequences {V;}scz

and {V;}sez of embedded closed subspaces of L2(R) such that
{Obc---cViicVycVi---CL*R), and {0}C---CcVCVyCV---CL*R),

with

(pi(. —m), (- — 1)) = Oikbmm, i k=1,...,7, m,neZ,

where (f,g) = [ fg and 8, = 1 if i = k, and 0 otherwise. Also, it is well known that if
(2.1) and (2.2) have solutions ®, ® € L%(R) such that {¢;(. —k): k€ Z,i=1,... ,r} and
{¢i(.—k) : k € Z,i = 1,...,r} form Riesz bases (or orthonormal bases) of their closed
linear spans Vy and Vp respectively, then both {V;}sez and {Vy}sez are multiresolutions of
L?(R). Suppose further that W is an algebraic complement of V; in Vi, and is orthogonal
to 170; and Wo is an algebraic complement of 170 in 171, and is orthogonal to Vy. The
compactly supported functions v; and 1’/31-,7,' =1,...,r, are called biorthogonal multiwavelets
if {;(.—k):keZi=1,...,r}and {¢i(. — k) : k € Z,i=1,...,r} form Riesz bases of

their closed linear spans Wy and WO respectively, and
(i(. =m), dr(. = n)) = Oikbmm, i k=1,...,7, m,n€Z

It can also be shown that the biorthogonality of the multiscaling and multiwavelet

functions implies the following perfect reconstruction (PR) conditions on the matrix lowpass
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and highpass filters:

—T
D HyHp = 6041, (2.5)
keZ

~T
Y GiGriy = ol (2.6)
keZ

~T
Y HiGry = 0, (2.7)
keZ.

—T
ZGka+2i = 0, (2.8)
keZ

for ¢ € Z, where HT is the transpose of H. Specifically, the sequences {Hy}rez and
{ﬁk}kez which satisfy (2.5) constitute a matrix conjugate quadrature filter (CQF). In the
Fourier domain, we define ﬁ(w) = % ez Hee 7" and E(w) = % Y okez Hye ik ag
the matrix lowpass frequency response functions associated with the multiscaling functions.
They are r x r matrices with trigonometric polynomial entries. Similarly, we denote the
matrix highpass frequency response functions as G (w) :== % > ez Gre 7% and 5 (w) :=
% Y okez Gpre 7% Equivalently, the above PR conditions (2.5)—(2.7) can be also expressed
as:

~% ~%
—~ — —~ e

HwH ) +Hw+mH wt+m) = I, (2.9)

GW)G (@) +CGw+mG w+m) = I, (2.10)
HwG W)+ Hw+mG w+mn) = 0, (2.11)
CW)H @) +Cw+mH @+ = 0. (2.12)

In this dissertation, we focus on the construction of PR matrix CQFs that satisfy the
PR conditions (2.5)—(2.7) and some other desirable multifilter properties that are useful in
image and video compression applications. Multifilters constructed as such, however, do
not necessarily lead to multiscaling functions and multiwavelets. To verify this, one has to
check the corresponding transition operators. The transition operator for H (w) is defined

as

T, M(w) = H (g) M (%) H* (g) +H (% +7) M (g +n) H' (% +r). (213)

This operator is useful for characterizing the stability and orthonormality of ®. The scaling

function vector @ is orthonormal if and only if {H} is a matrix CQF, and its transition
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operator Ty satisfies “Condition E”! (see [100]). Note that for {H}._,, the transition
operator Ty is a linear operator on My, where M, is the space of all r x r matrices whose
entries are trigonometric polynomials such that their Fourier coefficients are supported in
[—L,L].

For all the orthonormal and biorthogonal multifilters that we constructed here, we have
numerically verified that their transition operators satisfy Condition E, and, as such, these
multifilters are also the matrix CQFs that generate multiwavelet systems. Hence in this

dissertation, the terms “multifilters” and “multiwavelets” are often used interchangably.

In most signal processing applications, an important property of a multiwavelet system
is the approzimation order? of the associated multiscaling functions (or the vanishing mo-
ments of the associated multiwavelet functions). A multiscaling function, ®, provides an ap-
proximation order m if and only if there exist real 1 xr row vectors y, € R",k =0,...,m—1,
with y, # 0, such that

n
> () et e 0 E ) = 27w,
k=0

> () et w0 FEnm) = o,

k=0

(2.14)

where D" ¥ H (w) denotes the matrix formed by the (n — k) derivatives of the entries of
the matrix refinement mask H (w). A similar result applies to ® and its matrix refinement
mask H(w). We say that a multifilter has approximation order (mq,ms) if the matrix
refinement masks H (w) and H (w) satisfy the above conditions with m = m; and m = my
respectively.

It is finally worth noting that the above basic theories for a biorthogonal multiwavelet
system can also be applied to describe an orthonormal multiwavelet system by equating
the primal multiscaling functions and multiwavelet functions with the corresponding dual
function vectors. In addition, when we restrict the multiplicity r to be 1, we have the scalar

wavelet case.

!We say that a square matrix M (or a linear operator) satisfies Condition E if its spectral radius p(M) < 1
with 1 being the only simple eigenvalue of M on the unit circle.
2A function vector @ has an approximation order of m when all polynomials of degree from 0 to m — 1

can be exactly reproduced by a linear combination of integer translates of ¢p, k=1,..., 7.
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2.3 Multiwavelet Filter Design and Construction

This section is dedicated to the design and construction of some new and useful multi-
wavelet filters. It first formulates the concept of an equivalent scalar filter bank system, in
which we present an equivalent and sufficient representation of a multiwavelet system with
multiplicity r in terms of a set of r equivalent scalar (wavelet) filter banks. This relation-
ship motivates a new measure called the good multifilter properties (GMPs), which define
the desirable frequency response characteristics of the equivalent scalar filters. We then
relate the notion of GMPs directly to the matrix filters as necessary eigenvector properties
for the refinement masks of a given multiwavelet system. The GMPs are then exploited
to construct two families of symmetric-antisymmetric orthonormal and biorthogonal mul-
tifilters. The construction steps, and parameterized examples of multifilters with different
filter lengths are presented. An intrinsic relationship that allows the construction of these

multifilters directly from a special class of scalar wavelets will also be expounded.

2.3.1 Multifilter System and Equivalent Scalar Filter Bank System

A multifilter system refers to a matrix filter bank system that has a multiple-input multiple-
output (MIMO) relationship, as depicted in Figure 2.1 (a). In this figure, the vectorized
input stream « is filtered by a matrix filter P to produce the vectorized output y. In the
context of a multiwavelet system with multiplicity » > 1, the r output streams, y;,k =
1,2,...,r, are essentially given by the convolution of the r input streams, xy, k =1,2,...,r,
with the r X r matrix filter impulse response P. Mathematically, the matrix filtering process
can be expressed as
r
yr(n) = Z Z Pem(l)zm(n—2), neZ, k=12,...,r, (2.15)
Le7 m=1

where P, := [pk,m(ﬁ)]z,mzl, e Z; x, = {zk(n) tnez; and y;, = {yr(n) }nez. Equivalently,

in the Fourier domain, it can be written as

—

Y (w) = P(w)X (w), (2.16)
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Figure 2.1: Illustration of the concept of an equivalent system of scalar filters: (a) Multifilter
framework; and (b) Equivalent scalar filter framework with a multiplexer and downsamplers.

—
~

where l3(w) = % >rer P e 7% is the filter’s frequency response, X (w) = [21(w), ..., B, (w)]7,
and Y (w) = [¥1(w), ..., y,(w)]T. For critical sampling in the filtering process, the output
streams can be further downsampled by a factor that corresponds to the number of channels

(bands) of the multifilter system.

In most signal processing applications, we often desire that the filtered streams to
possess certain properties; for instance, the lowpass-filtered outputs to contain only the
smooth portions of the input signal, and the highpass-filtered outputs to capture only the
significant signal transitions representative of the high-frequency component of the input
signal. In the case of a scalar filter that accepts one input stream and generates one output
stream, it is well-known that the ideal frequency response of the filter is given by the
“brickwall” filter with a sharp cutoff frequency. The frequency characteristics of a matrix
filter, however, are not so straightforward; this partially accounts for the lack of insights
into which properties will contribute to good matrix filtering and, more challengingly, how

to design matrix filters that possess certain desirable filtering properties.

In the following, we will illuminate the above problems by exploring the connection
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(or relationship) between multifilters and some related scalar filters. Consider the following
observation that establishes this relationship via a multiplexing operator and appropriate

downsamplers:

Observation 2.1. For any multiwavelet system with multiplicity r > 1 that has r input
streams, T1,T2,...,&y, and v output streams, Y, Ya,...,Y,, there always exists an equiv-
alent filter bank system with a set of r scalar (wavelet) filters, py,py, ..., p,, such that the
output stream y;, is a filtered and downsampled version of a multiplezed input stream, v,

with the scalar filter p;,, for allk =1,2,...,r.

Figure 2.1 (b) illustrates an equivalent framework, from an input-output filtering view-
point, that replaces the multifilter P with a cascade of a multiplexer, a system of equivalent
scalar (wavelet) filters p;,p,,...,p,, and downsamplers. The object now is to establish the
following: (i) the relationship between the equivalent scalar filters and the associated mul-
tifilter system; and (ii) the function of the multiplexing operator. This subsection will
show that the r equivalent scalar filters are, in fact, the r polyphases of the correspond-
ing multifilter. The multiplexer operator will also be defined here, but more insights into
how the multiplexer can motivate the development of the proposed multiwavelet transform

framework will be given in Section 2.4.

For the meantime, assume? that we already have the vector input streams @1, @s, ..., x,,
which are filtered to produce the vector output streams y,,y,,...,y,. Suppose further
that we multiplex the multiple input streams xy, k = 1,...,r, to produce a single stream
v = {v(n) }nez via a multiple-input-single-output (MISO) operator, MUX, as depicted in
Figure 2.1 (b). This subsequently allows us to filter the multiplexed stream v = {v(n)}pez
independently using each of the r scalar (wavelet) filters, p;, = {px(n)}nez,k =1,2,...,7,
and followed by downsampling with a decimation factor of r, such that:

ye(n) = Y pe(Ov(rn —2),

Lel

r—1
= > 3 prltr+m)o(rn— (br+m)), ne. (2.17)
Le7 m=0
3We will postpone the discussion on an efficient technique for generating the multiple (vector) input

streams to Section 2.4.
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for n € Z. By comparing (2.15) and (2.17), we can establish that:
(1) the relationship between the equivalent scalar filters, p,, and the associated multifilter

P, is given by
pr(lr+m—1) =ppm), L€Z, k,m=1,2,...,r, (2.18)

(ii) the operator MUX that multiplexes the multiple input streams & into a scalar stream

v is defined as
MUX : (1, Z2, ..., &) —> v : Ty (k) — v(rk — (m — 1)). (2.19)

Denote p; (w) := % Spezpr(n)e ¥ k=12 ... r. From (2.18), we can show that

Bi(w) = Z(Zps,t(k)eﬂ“”’) e Tk

keZ \t=1
r . .
- 3 (St o)
t=1 \k€Z
where the " polyphase of the s equivalent scalar filter is given by Y ps4(k)e™7™ for
keZ
all s,t =1,2,...,r. Hence, it is shown that any multifilter with a multiplicity » > 1 can

be represented by a set of r equivalent scalar filters, each consisting of r polyphases. Such
an observation is also related to the theory of polyphases of block or vector-valued filter
banks (see e.g. [105, 114, 121]). In summary, we have formulated an equivalent scalar filter
bank system that guarantees an identical MIMO relationship with that of any multifilter

system. In matrix notation, (2.20) can also be expressed as

[BL(w), B, (w)]" = Plrw)e(w), (2.21)

where e(w) = [1,e77%, ..., e 70r—DwT,

2.3.2 Good Multifilter Properties

Having established an equivalent MIMO relationship above, we now have a new framework
to analyze and design a multifilter system by imposing desirable filter properties on the
corresponding set of equivalent scalar filters. This motivates the development of a new set

of multifilter design criteria called “good multifilter properties” (GMPs). We first provide
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the definition of GMPs in relation to the desirable magnitude responses of the equivalent
scalar filters. For convenience of notation, we will discuss in the context of orthonormal
multiwavelets; for biorthogonal multiwavelets, the same definition for the primals will apply

to the duals (the details can be found in Section 3 of [13]).

Definition 2.1. A given multiwavelet system with multiplicity v is considered a good mul-
tifilter of GMP order (dyi,da,ds) if its equivalent lowpass and highpass scalar filters, hy, and

9., possess the following properties:
(i) B00) = 6,0, v=0,1,...d; — 1,
(i) BW) =0, v=0,1,.dy 1,
(iii) 3(0)=0, v=0,1,..,d;— 1,

forallk =1,2,...,r, where the superscript ) denotes the V"' -derivative, and dy, dy,ds > 1.

In fact, it is clear that the above criteria ensure that the equivalent scalar filters, hy
and g, kK = 1,2,...,r, behave as lowpass and bandpass (highpass) scalar filters, respec-
tively. Taking the v'"-derivative on both sides of (2.21), the above criteria for good filter

characteristics can now be expressed explicitly in relation to a multifilter system as:

Dy (V>7"V_qﬁ(”_q)(0)e‘q>(0) —6,0e(0), v=01,...d — 1,

(i) $° (;) I ™ (rm)e@ (1) =0, v =0,1,..ds — 1,

q=0
(111) Z (:) TV—qa(V*q) (0)6(‘1) (0) =0, v=0,1,...,ds — 1, (222)
q=0
where e(w) = [1’ e*jw7 . 7efj(r71)w]T‘

It will now be very interesting to understand the idea of GMPs directly in terms
of some properties of the matrix filters. Specifically, we will investigate the eigenvector
characteristics of matrix filters that correspond to multiwavelets possessing GMPs. From

the above relationship, we can easily verify the following proposition:
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Proposition 2.1. Suppose that an orthogonal multiwavelet system has a GMP order (1,1,1),

then we have:
(i) H(0)e(0) = e(0);
(ii) H(rr)e(r) = 0; and
(iii) G(0)e(0) = 0.
For any orthogonal multiwavelet system where ﬁ(O) satisfies Condition E and has a
vanishing moment of at least order one, there exists a vector v such that
v ' H (mv) = 6,07, v=0,1 (2.23)

By setting w = 0 in the CQF relation (2.9), and multiplying it with v” from the left side,

we have
vTHO)H(©0) + v H(r)H(r) =T (2.24)
Clearly, by applying (2.23) into (2.24), we obtain
H(0)v = v, (2.25)

which implies that v is a right eigenvector of /I-T(O) corresponding to an eigenvalue A = 1.

Similarly, from (2.11) and (2.23), we can derive

G(0)v = 0. (2.26)

®(0) = v, (2.27)

up to a constant (i.e., ®(0) is parallel to v). Hence, if a multiwavelet system has a GMP

order (1,1,1), then, up to a constant, we have
2(0) = v = e(0), (2.28)

which proves the relation (i) of Proposition 2.1 since A = 1 is a simple eigenvalue of /I-T(O)
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It is, however, noted that (2.28) imposes a rather restrictive condition on the design
of multiwavelets. To alleviate this constraint, we can perform a change of basis by apply-
ing a similarity transformation to the multifilters, such that the new multifilter frequency

responses are given by

H ()= UHWU ' and G (w)=UGWU (2.29)

and the associated new multiscaling function vector and multiwavelet vector are defined as
&' (2) =UP(z) and P(z)=UT(z), (2.30)

respectively. It is worth noting that such a similarity transformation still guarantees that
{Hi,Gi} satisfies the PR criteria (2.9)—(2.11). Therefore we can say that an orthog-
onal multiwavelet system {H, Gy} possesses a GMP order (d;,d2,ds) if there exists an
orthogonal matrix U such that {Hi, Gi} possesses a GMP order (dy,ds,ds). In fact, the
orthogonal matrix U is completely determined by the (zero order) moment of multiscaling

function vector </I\>(0) such that UEI;(O) is parallel to vector e(0).

For simplicity of the following exposition, but without loss of generality, we consider
multiwavelets with multiplicity v = 2. In addition, as we will show later in Section 2.5,
a multiwavelet system should possess a GMP order of at least (1,1,1) in order to produce
good compression performance. As a useful multifilter design guide, let us consider the

following proposition:

Proposition 2.2. A given orthogonal multiwavelet system of multiplicity r = 2 has a GMP

order of at least (1,1,1) if and only if ﬁ(O) is singular.

Proof. Sufficient part: Choose an orthogonal matrix U such that the vector UC/I;(O) is

parallel to e(0) = (1,1)T. Clearly, from (2.25) and (2.26), we know that the GMP order

— a b
components d; and ds are at least 1. In addition, suppose that H ﬁ(0) = , then

c d
from (2.23) and (2.25), we have ¢ = d,b = ¢. On the other hand, since ﬁ(O) is singular

and

H'(0)e(0) = e(0), (2.31)
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we have ¢ = b = ¢ = d = 1/2, which implies that /I;ﬁ(O)e(ﬂ) = 0. Hence, do > 1. The

proof for the necessary part is obvious from Proposition 2.1. O

The above discussions can now be summarized into the following step-by-step proce-

dure to determine the GMP order of a given multiwavelet system:

Step 1: (i) Compute the normalized 1-eigenvector, w, of ﬁ(O)
(ii) Find an orthogonal matrix U such that Uw = %6(0).
Step 2: Compute the transformed multifilters, H,* = UHU", G} = UG,U", k € Z.

Step 3 : Check for the highest GMP order (dy, d,ds) of {H*, G*} using (2.22).

In general, a given multiwavelet system that satisfies (2.9)-(2.11) for perfect recon-
struction may not necessarily possess the GMPs as outlined in Definition 2.1. For example,
the well-known GHM multiwavelet [40, 43] does not directly satisfy most of the above good
multifilter properties. From a practical signal compression viewpoint, we would consider
such a multifilter system to be “ill-designed.” Some simulation results in Section 2.5 later
will further support our argument. An elaborate investigation on the incorporation of the
above good filter characteristics directly into the construction of multiwavelet filters can be

found in [10, 11, 13].

2.3.3 Symmetric-Antisymmetric Orthonormal Multifilters

This subsection introduces a new class of symmetric-antisymmetric orthonormal multifilters
(SAOMFs) that possess GMPs. Here we will focus on a class of symmetric-antisymmetric
orthonormal multiwavelets (SAOMWSs) with multiplicity 7 = 2, and whose members have

finite and real-valued matrix lowpass sequences { H k}fc\;o satisfying the following;:

(1)  Hy and H y are non-zero matrices. (2.32)

(i) Hy=SHy_4S, k=0,1,... N, where § = diag(l,~1).  (2.33)
— 1 0

(i)  H(0) = . <1 (2.34)
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Collectively, we refer to the above conditions as Condition SA for easy referencing.
The second condition (2.33) implies that the corresponding multiscaling functions form
a symmetric-antisymmetric pair, as shown in [33]; i.e., ¢;i(z) = (=1)""1¢;(L—z), i=1,2.
The orthonormality of ¢ also implies that ¢ (0) =1 and 52(0) = 0. The third condition
(2.34) is a necessary condition [36] for any matrix lowpass filter satisfying (2.32) and (2.33)

to generate a MRA of L?(R).

By applying (2.29) to (2.33), we have
H', = AH'y_,A, k=0,1,...,N.

In addition, the relationship between the equivalent scalar filters and the associated multi-

filter in (2.18) gives the following augmented matrix
H'y HY' ... H'y|= :

where
hi(£) =ho2N+1—-4¢), ¢=0,1,...,2N + 1. (2.35)

From Proposition 2.2, an orthogonal multiwavelet system with a GMP order (1,1,1) will

have
H(0) = , (2.36)

which implies that A = 0 in (2.34). In other words, we can now construct the matrix
lowpass sequences {H}Y_; by means of constructing hi. Since we have established in [12]
the relationships between length-2/N and length-(2/N — 1) multifilters that satisfy Condition

SA, we will only focus on the construction of length-2N multifilters below.

To further facilitate the following exposition, we first review the concept of polyphase

matrix factorization of a two-channel orthonormal filter bank, as proposed by Vaidyanathan

et al. [113, 114]. Let HéN)(z) and H{N)(z) be the z-transform of the lowpass and highpass

filters associated with a two-channel orthonormal wavelet filter of length 2N, {hk}ig 0 L

{9}V, Tt is called a power complementary CQF if |H8N) (2)? + |H§N) (2)]> = 2 on
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the unit circle |z| = 1, and H{N)(z) = —z_ZN“H((]N)(—z_l). We can express H((]N)(z) =
Zz Y hyz=% in terms of its polyphase components as H((]év) (22) + z_lHé]lV)(zz), where
H((]év) (z) = chv;ol thz_k and Hé]lv)(z) = chv:ol hor+12~ " are, respectively, the even- and

odd-phases of {hk}i ! Similarly, the polyphase components of H ( ) = ZzN 0 Loz =

HY (22) 427 HD) (22) are given by H(Y (2) = SNV gopz~F and HEY (2) = SN gop 1127*

where g = (=1)**'hgn_1_p, k = 0,1,...,2N — 1. Hence the polyphase matrix of an or-
thonormal filter bank can be defined as

o) _ [H0 ) H' )| 257

N N
H((n )(Z) Hfl )(Z)
where the superscript (V) refers to filters of length 2N.

It was further shown in [113] that all possible two-channel perfect reconstruction filter

banks with impulse response length 2/V can be parameterized by the angle parameters, oy,

as
N-1
H™(2) = R(a) [[ D(2)R(ew), (2.38)
k=1
where
1 0 Cos (v  — sinqy
D(z) = and R(ayg) = ,
0 z! sinqy  COS ay

for k=0,...,N—1. Note that since H!Y)(2) is of degree N —1, both HéN)(z) and HfN) (2)
are of degree 2N — 1. In addition, for the filter bank to be orthonormal and have at least
one vanishing moment (i.e., HéN)(l) =+/2 and HéN)(—l) = 0), we also need to impose the
following condition (e.g., see [105, 115]):

N—-1 T
Z ap =7 mod 27, (2.39)
k=0

on the angle parameters, ay.

As shown in [12], the class of SAOMFs with a GMP order (1,1,1) is intrinsically related
to a special family of length-4 N orthonormal scalar CQFs [15], which in turn can be derived
from some length-2/N orthonormal scalar CQFs. Hence in order to construct the length-

2N multifilters, we will first investigate the construction of the special class of length-4 /N

7
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orthonormal scalar wavelet filters, {hy }i’j 0 ! which satisfy either one of the following two
conditions:

hops1 = (—1)*hor, k=0,1,...,2N -1, (2.40)
or

hops1 = (—1)*thoy, k=0,1,...,2N — 1. (2.41)

More details on the requirement of these conditions can be found in [12].
By applying the parameterized representation of (2.38) in the context of a length-4 /N
orthonormal scalar filter bank, the following two theorems will provide the necessary and

sufficient conditions on the ay’s so that either (2.40) or (2.41) holds:

Theorem 2.1. H(ZN)(Z) s the polyphase matriz of a length-4N orthonormal filter bank

which satisfies (2.40) if and only if H(ZN)(Z) has the form
2N-1
H®)(2) = R(ao) [[ D(2)R(cw), (2.42)
k=1

where the angle parameters, ay, satisfy the following conditions:

ag =7/4, w9 =0mod 2w, for k=12,...,N—1, (2.43)
and
N—-1
agk+1 = 0 mod 2. (2.44)
k=0

Proof: See Appendix A.1.

A closer observation shows that a filter satisfying (2.41) can, in fact, be obtained by
‘flipping’ or ‘reversing’ the order of the filter satisfying (2.40), and vice versa. Hence, the

following theorem follows directly from Theorem 2.1:

Theorem 2.2. H(ZN)(Z) s the polyphase matriz of a length-4N orthonormal filter bank
which satisfies (2.41) if and only if H(ZN)(Z) has the form

0 1 2N —1
HON) (z) = 772N R(ag) [[ D(z"")R(aw), (2.45)
1 0 k=1

where the angle parameters ay, k =0,...,2N — 1, satisfy (2.43) and (2.44).

Proof: The proofis similar to that in Appendix A.1, and hence can be shown easily. O
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Although we can always construct the length-4/N scalar CQF from scratch using such
methods as spectral factorization or lattice factorization, we will present here a simple
method for direct construction starting from any existing length-2/NV scalar CQFs, as de-

scribed in the following lemma:

Lemma 2.1. Let {hk}iﬁgl be a length-2N scalar CQF. Construct a length-4N sequence

b YN L satisfying either (2.40) or (2.41) as follows:
k=0

1 1
by, = §(h2k — Thokt+1), bagq2 = §(h2N7272k +Thon—1-2), k=0,1,...,N -1

Then this length-AN sequence is a scalar CQF.

Proof: The proof is simple as we only need to verify that the length-4 N sequence satisfies

the following two basic conditions:
(1) D> g bkbr+2i = 2004, 4 € Z; and
(i) Yop(=1)*bx = 0. O

By Lemma 2.1 and the relation (2.35), we can now construct the matrix lowpass filter,

H, from the special length-4N orthonormal scalar filter, as follows:

1 b4k b4N—4k—2 1—7 —(1 + 7')
H2k = 5 )
—b4k b4N—4k—2 1 +7 1—7 (2 47)
1| bart2 ban—ap—s l+7 —(1-71)
Hop11 = 2 , T==L
—baky2 baN_ak—a -7 1+7

For a multiwavelet system, we will also need to construct the matrix highpass filter
once the matrix lowpass filter is known. In the case of scalar wavelets, the procedure of
constructing the highpass sequence from a lowpass sequence is simple: order reverse and
sign alternate the lowpass sequence. For multiwavelets, the construction of the matrix
highpass sequence, {G}}, is more complicated; nonetheless, a general solution using a
matrix extension technique has been proposed by Lawton, Lee, and Shen [72]. However, for

orthonormal multiwavelets satisfying Condition SA, we have introduced in [12] two explicit
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formulations for constructing the matrix highpass sequence, {Gy}, directly in terms of the
matrix lowpass sequence, { Hy}. The following shows one of the two direct constructions;

the other can be found in Proposition 2 of [12]:

Proposition 2.3. Let the lowpass sequence {Hk}z]ial be a matrix CQF satisfying Con-
dition SA. If HkAHQTN—1—k—2ia k=01,....N—i—1,:=0,1,...,N — 1, are symmetric

matrices, then the highpass sequence {Gk}ii[al can be obtained from {Hk}ii[al as follows:

Gr=(-1)"""Hyy_1 A, k=0,1,...,2N —1. (2.48)

Proof: See Appendix A.2.

Furthermore, if the transition operator satisfies Condition E, then {Hy, Gk}i’j 0 ! gener-
ates a length-2N orthonormal multiwavelet system satisfying Condition SA. In fact, the
proposed direct construction technique has shown to be able to easily construct the multi-
wavelet functions of some earlier multiwavelet filters satisfying Condition SA, such as Chui
and Lian’s [33]. In [12], we showed how an even-length (2N) matrix CQF that satisfies
Condition SA can be derived directly from an odd-length (2N — 1) matrix CQF; and vice
versa. We further proved in [15] that, for any even-length SAOMF, we can always find a
corresponding odd-length SAOMF such that the implementation of discrete multiwavelet
transforms using either the even- or odd-length SAOMF produces identical output for a
given input signal by choosing a properly designed pre-filter.

As examples on the construction of SAOMFs, we will illustrate the process of con-
structing a parameterized length-4 multiwavelet system from a length-4 orthonormal scalar
wavelet. Appendix B.1 presents an example starting from the popular Daubechies’ length-
4 scalar wavelet [37]. The parameter v in the parameterized family of length-4 SAOMWSs
(which we denote as SA4) can be varied to incorporate some desirable multifilter design
properties such as GMPs. The performances of a few members of SA4 are analyzed in
Section 2.5. A parameterized family of the length-6 SAOMF (SA6) is also given in Ap-

pendix B.2. Examples of other SAOMF's with longer filter lengths can be found in [15].
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2.3.4 Symmetric-Antisymmetric Biorthogonal Multifilters

This subsection extends the above theory to the construction of a new class of symmetric-
antisymmetric biorthogonal multifilters (SABMFs) that possess GMPs. Similarly, we will
focus on a class of symmetric-antisymmetric biorthogonal multiwavelets (SABMWs) with

multiplicity r = 2. We define the GMPs for a SABMW system as follows:

Definition 2.2. A biorthogonal multiwavelet system is considered to have a GMP order*
(ds, ds) if its refinement masks /ﬁ(O) and H(0), and its sets of equivalent scalar lowpass
filters, b and ki, associated with the matriz lowpass filters H?c and ﬁi, respectively, possess

the following properties:

(i) Both /I-}(O) and ﬁ(O) have a common right 1-eigenvector,

(i) W (1) =0, v=0,1,.dy—1,

=(v) -
(iii) by (1) =0, v=0,1,...dy —1,

for both k = 1,2, where the superscript ®) denotes the v*"-derivative, and dg,czg > 1. The
transition matriz U is then determined by the property that the vector U@(O) 1s parallel to

the vector [1,1]7.

In a biorthogonal setting, we say that the primal and dual finite-length matrix se-

quences {H k}]]cvzuN[ and {ﬁk}]]j:uﬁ satisfy Condition SA if the following conditions hold:

4

Hy=SHy. yi_,S, for k=N'... N“ (2.49)

Hk :Sﬁﬁu+ﬁ[—ks’ for k‘:j\vﬂ,...,]f\?u. (250)

— 10 = 10 ~

H(0) = , H(0)= |, where |[X|A] <L (2.51)
0 X 0 A

Here (2.49) and (2.50) imply the symmetry and antisymmetry of the multiscaling functions

Tt is important not to confuse the two-parameter GMP order for SABMWs with the three-parameter
GMP order for SAOMWs. In the SABMWs case, the two parameters refer to the corresponding GMP order
of the primal and dual refinement masks.
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[33]; i.e.,

¢p(@) = (~D)F 1@ (N" + Nt —z),  ¢p(a) = (-1 (N + Nt —z), k=1,2.

(2.52)

Equation (2.51) entails that ﬁ(O) and ﬁ(O) satisfy Condition E, which ensures the existence
of the solutions of the corresponding matrix refinement equations. Further, the Condition

SA implies that

—
P ——

H(0)[1,0]" = [1,0"; H(0)[1,0]" = [1,0]". (2.53)
Hy=SHy. y S < Hj,= AH", ., A (2.54)
— — — —
Hk :SHNquﬁlka{:;}Hk:AHIV“+N€—I¢A’ (2.55)
where
0 1
A=
10
By (2.51),
i 1l1+x 1A =t Ll1+Xx 1-2
T—A 1+ 1T—X 14\

Equations (2.53) and (2.56) lead to the following proposition:

Proposition 2.4. A biorthogonal multifilter (BMF) satisfying Condition SA possesses a

GMP order (1,1) if and only if both ﬁ(O) and ﬁ(O) are singular; i.e., A = A=0.

Next we address the question of constructing BMFs that satisfy Condition SA and
have a GMP order of at least (1,1). Equations (2.54) and (2.55) imply that the equivalent
scalar filters, h§ and hg, are time-reversed versions of one another; so are fﬁﬁ and Eg. Hence

the resulting matrix lowpass filters { H i}é\zm and {ﬁi}fj:uﬁf have the form

a2k a2k+1
H = * . k=N%... N (2.57)

Qo(NCHNv—k)+1  B(N4Nv—k)

and

— agy, A2k+1 ~ ~
' - * . k=N'.. . N- (2.58)

| YNt 4 Nu—k)+1 DNt Nu—k) |
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The following conditions on scalar sequences {ak}zz ;;[1 and {ay i]z ;;z are derived
from the PR condition (2.9):

> appiai =0, i €Z, (2.59)

Zakam+(2ﬁu+l)_k_4i =0, ieZ, (2.60)

Zak’d2ﬁf+(21\7u+1)fk+4i =0, 1€2. (2.61)

Clearly if two scalar sequences satisfy Conditions (2.59)-(2.61), then the corresponding ma-
trix CQF can be constructed via (2.57) and (2.58). Using (2.57), (2.58), and Proposition 2.4,

we see that if the scalar sequences also satisfy

Zk:azk = Zk:azkﬂ = % and Zk:a'% = ija'z,m = LQ (2.62)

then the corresponding BMF possesses a GMP order (1,1).

N

The corresponding highpass multifilters, {G},}M", , and {ék}y_uﬁ are constructed

k=M? z
either directly from the lowpass filters or from solving the PR conditions (2.5)—(2.7). Since
symmetry /antisymmetry is also desired for the highpass multifilters, we will require them

to satisfy
Gy = SG iyt pS, for k=M. . M (2.63)

~ ~ —, —
Gr=8Gy. g0 S, for k=M e, MY, (2.64)
which are similar to those required for the lowpass multifilters. The following theorem shows
that two parameters can be associated with these highpass multifilters for the purpose of

filter optimization:

Theorem 2.3. Suppose that {Hy} and {ﬁk} are finite-length lowpass multifilters of a
SABMF system, and that the corresponding finite-length highpass multifilters {Gy} and

{Gy} satisfy (2.63) and (2.64). Then the sequences {G%} and {CN%'Z} where

N T 0 b 1/ 0| ~
Gk = Gk7 Gk = Gk7 7-75 € R\ {0}7
0 6 0 1/

also satisfy (2.63) and (2.64), and that they too are highpass multifilters for the same lowpass

multifilters {H} and {ﬁk}

Proof: The proof is straightforward and involves only verifying the PR conditions (2.5)-

(2.7). O
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In the following, we present a method for constructing SABMFs with GMPs. A step-
by-step procedure to construct a SABMF with GMP order (d;, d2) and approximation order

(p1,p2) is given below:

e Step 1: Let scalar sequences {ak}zz ;;&1 and {%}i]j;i\;ll be related to the matrix
lowpass sequences via (2.57) and (2.58). Construct the system of nonlinear equations

from (2.59)-(2.61) and (2.56) with A = A = 0.

e Step 2: Augment the system with equations for higher GMP order (di,dy) using

Definition 1.

e Step 3: Augment the system with equations for higher approximation order (p1,p2)

using (2.14).

e Step 4: Seek a solution or solutions of the nonlinear equations using symbolic pack-

ages such as Mathematica or Maple.

e Step 5: Solve the PR equations (2.9)-(2.11) for the corresponding matrix highpass

sequences. Apply Theorem 2.3 to introduce the two highpass parameters.

A good strategy for choosing di, da, p1, p2 for a BMF of a specific length is to pick its values
such that the resulting matrix lowpass filter has one free parameter available for further
optimization (such as imposing the constraint of having the magnitude responses of the

equivalent scalar filters as close as possible to the ideal brick-wall filter).

Following the above procedure, a large number of SABMF's of varying lengths have been
constructed; the relatively short length 4/4 and 5/5 (BSA(4/4) and BSA(5/5)) SABMFs
are presented in Appendices B.3 and B.4. They are chosen not just for ease of exposition but
also for their good compression performances with relatively low computational costs, as
will be investigated in greater detail in Section 2.5. The method described above involves
solving a system of nonlinear equations for the matrix lowpass and highpass filters of a
SABMF. The difficulty level of such a task increases with the lengths of the filter sought,
more so if the solution desired is to be in symbolic form (in contrast to being numeric).

Symbolic algebra packages, such as Maple V, are able to provide symbolic solutions for up
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to length 6/6 with ease and time efficiency. However beyond this length, it is more effective
to adopt an alternative means of obtaining parameterized filter solutions, namely, the lifting
scheme proposed by Goh et al. [47]. Longer SABMF's such as BSA(8/6) and BSA(7/9)
were obtained from parameterized solutions generated using the lifting scheme, and then
with the parameters utilized for achieving GMPs, and closest proximity to the brick-wall
filters. The filter coefficients of the BSA(6/6), BSA(8/6), and BSA(7/9) SABMFs are

given in Appendix B.5.

2.4 The Proposed Discrete Multiwavelet Transforms

The previous section has introduced the concept of GMPs and showed the construction
of SAOMWs and SABMWSs. Having good multifilters alone, however, does not directly
result in good application of the multifilters. Therefore, this section focuses on the devel-
opment of an efficient and effective framework for discrete multiwavelet decomposition and
reconstruction of a given discrete-time signal. In particular, we will address the important
issue of multiwavelet initialization or pre-filtering, which concerns the generation of multiple
(vector) input streams from a given scalar source stream. In this dissertation, we propose
to develop a generalized paradigm for discrete multiwavelet transforms, which works well
with any given multiwavelet system, regardless of whether it possesses GMPs or not. In
short, the proposed multiresolution framework for multiwavelet transforms embodies the
following properties: orthogonality, low complexity, robustness, and preserving a compact

(non-redundant) representation of the input signal.

2.4.1 Some Problems of Multiwavelet Initialization

Unlike scalar wavelets in which Mallat’s pyramid algorithms [84] have provided a solution
for good signal decomposition and reconstruction, a good framework for the application
of multiwavelets, however, is still being researched. Several proposals have been made to
advance the development of this area. For example, Xia et al. [121] have proposed an

algorithm to compute the multiwavelet (vector-valued) transform coefficients by adding a
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proper pre-filter (pre-processing matrix) before the vector filter banks that generate mul-
tiwavelets. They introduced an interpolation-based technique to obtain the (vector) input
streams for the GHM multiwavelet. The method can be viewed as a discrete vector-valued
wavelet transform for certain discrete-time vector-valued signals. They also presented some
numerical results to indicate that the energy compaction for discrete multiwavelet trans-
forms may be better than that for conventional discrete wavelet transforms. In addition
to their work, Strela et al. [107] have investigated the construction of “constrained” mul-
tiwavelets for filtering two-dimensional signals, and applied them to both image denoising
and image compression. The above proposals, however, suffer from a major shortcoming —
they are only restricted to the GHM case, and hence, are likely to be not robust in general.
As pointed out in [121], the corresponding post-processing matrix, which requires that the
pre-processing matrix to be invertible, may not exist for other multiwavelets.

Liang et al. [79], on the other hand, have also applied multiwavelets to image coding,
and proposed an inter-subband prediction scheme to exploit the correlations resulting from
the direct application of the GHM multiwavelet. Recently Xia [122] improved upon the
earlier work in [121] with a new method for pre-filtering and was able to apply it to another
length-3 orthogonal multiwavelet filter [33]. Nevertheless, the proposed transform resulted
in an overcomplete or redundant representation of the original signal, which increased the
size of the input data by a factor of r (where r is the multiplicity of the multiwavelets)
after pre-processing. Obviously, this does not only require more computations, but also
goes against the basic idea of data compression®. Clearly, there is a pressing need to devise
a general, non-redundant, and reversible pre-filtering technique for efficient multiwavelet
transforms. A recent work in this direction can be found in [50] where an orthogonal and
approximation-order preserving pre-filter was presented. The computational complexity of

the pre-filter, however, increases with the approximation order of the multiwavelet filter.

®An overcomplete representation results in an expansion of the original signal, which will eventually
complicate the coding of positional information of transform coefficients although the zero-order entropy

could be lower, or it may have higher energy compaction.
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2.4.2 Vector-Valued Multiresolution Analysis and Synthesis

This subsection presents the basic idea of a vector-valued multiresolution framework for
discrete multiwavelet transforms (decomposition and reconstruction algorithms) of discrete-
time signals. For simplicity, but without loss of generality, we consider the case of a two-
channel transform using a biorthogonal multiwavelet system with multiplicity v = 2 in the
following exposition.

Consider again the two-scale equations (2.1)—(2.4). They can be realized using a mul-
tiwavelet filter bank concept [107], much like the well-known multiresolution algorithms
for scalar wavelets [84]. Denote ¢y ) = [b1.0ks P20kt and &M = [$l,g,k,q~52,4,k]T where
buog = 220, (20 — k) and ¢, 0 = 2926, (2'c — k), v = 1,2. Likewise, we define 4,

IZM and their component functions 1, ¢} and @Zy,&k, v =1,2. Since 174 C XN/gH for ¢ € 7Z,

and (Jyey, Vi = L?(R), then for a sufficiently large ¢, say L, we can assume that a given
signal f € 1~/L; this allows the signal f to be sufficiently represented as a linear combination
of the vector basis functions (}5 1k» and then be further decomposed into its constituents by

projecting it onto some nested basis functions, &M, for some ¢ < L. Mathematically, we

have
flz) = Zp€,k$L,k($) (2.65)
kez
= Zpgo,k;ﬁm,k(ff)‘l‘ Z ZQZk"Z&k(m)a (2.66)
kez Lo<(<L k€Z

for a fixed integer Ly < L. Further denote Poj = P10k pu,k]T, and Q= [q1,2.k» qu,k]T.

The projection (i.e., the scaling and multiwavelet) coefficients are given by

pock = [ F@busnla)da, (2.67)
dar = [ F@bas)dn, v=12 (2.65)
By equations (2.1)—(2.4), one can derive the multiwavelet decomposition algorithm as fol-
lows:
Pr-1k = Z H ., 2kPgm (2.69)
mez
Qo1p =Y GmokPrm (=L L-1,.. Lo+l (2.70)

meZ
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Clearly (2.69) and (2.70) are recursive in nature; this constitute the crux of multiscale
or multiresolution analysis of a signal. As the matrix filter H has lowpass properties,
the application of (2.69) essentially smooths out the input signal and generates a coarser
(approximation) version signal. The matrix highpass filter G, on the other hand, extracts
the high-frequency components and attenuates the low-frequency components of the input
signal to produce a detail version of the signal. It is also worth noting from (2.69) and
(2.70) that both H and G actually operate, in complement with one another, on the same
input signal at a particular scale. With careful design, this ensures that the portion of the
input signal that is rejected by filtering with H will then be captured by filtering with G,
thus making perfect reconstruction possible. Furthermore, since the filtered signals have
a narrower frequency bandwidth, they can be downsampled appropriately to preserve a
compact representation of the input signal. A more vigorous treatment on the topics of
critical sampling, multirate filter banks, aliasing cancellation, and perfect reconstruction
requirements, can be found in [114] among others.

The analysis stage practically decomposes an input composite signal into a multires-
olution representation of approximation and detail components of the signal. This greatly
helps in the analysis and processing of a signal; for example, one may discard or suppress
some small high-frequency coefficients for noise removal, and in some signal compression
applications, one can efficiently code the high-energy approximation version of the signal
and ignore the low-energy detail components without much loss of information. After pro-
cessing the various components of the signal, it is important to be able to reconstruct the
processed signal appropriately. The synthesis stage will recombine the approximation and
detail components using the following multiwavelet reconstruction algorithm:

Pri= HyoPrim+ > Croom@r1m £=Lo+1,...,L. (2.71)
meZL meZL

The above multiwavelet decomposition and reconstruction algorithms can, in fact, be
realized using a cascaded vector filter bank structure. Figure 2.2 illustrates a 1-level sub-
band decomposition and reconstruction framework for discrete multiwavelet transforms.

The left half of Figure 2.2 shows how a vector input stream is decomposed by a matrix
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Figure 2.2: One-level of decomposition and reconstruction in the multiwavelet filter bank.

lowpass filter, H, and a matrix highpass filter, G, to generate the next lower resolution
version of the signal. This is followed by subsampling by a factor of 2 to preserve compact
representation of the input signal in a two-band filtering process. For octave-bandwidth
decomposition, only the lowpass subbands will be decomposed iteratively to produce sub-
sequent lower resolutions. An N-level decomposition will consist of a cascade of N such
1-level decompositions, each operating on the lowpass subbands of the previous resolution.
The right half of Figure 2.2 depicts the corresponding 1-level multiwavelet reconstruction.
The lowpass and highpass subbands are first upsampled by a factor of 2, filtered by the
corresponding synthesis matrix filters, and then recombined to recover the original (but

delayed) vector input signal.

2.4.3 Generalized Pre-Analysis and Post-Synthesis Multirate Filters

The previous subsection has presented both the multiresolution decomposition and recon-
struction algorithms for discrete multiwavelet transforms. However, it remains an open
research problem on how one can obtain the initial vector input stream from a given one-
dimensional (scalar) signal such as a row or a column of an image. Referring to (2.69) and
(2.70), we will note that the initial scaling coefficients, p; ,,, for a fixed L € Z, which are

representative of a discrete-time input signal f € IN/L, are of paramount importance to begin
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the analysis stage of the algorithm. From (2.67), we have

PiLEk = /f(x)d)l,L,k(x)dxa (2.72)
s = / F(@)do.pp(@)de, (2.73)

which can be approximated using some quadrature formulae. Analogously, in the context of
scalar wavelet transform, the common and popular choice is using the one-point quadrature
[108] where we assume that py,, = f(k) for some sufficiently smooth signals over the local

support of the scaling function®.

Recall from Figure 2.1 (b) that the multiplexed stream v is to be fed independently into
each of the equivalent scalar filters associated with a given multifilter system. On a similar
note, it will be conceptually identical to consider v as the given input signal that needs
to be demultiplexed into multiple input streams, x, before they are decomposed further
by the multifilters. This process of generating the multiple input streams from a single
stream is known as multiwavelet initialization or pre-filtering. We denote the matrix pre-
filter that precedes the recursive vector-valued decomposition process as a “pre-analysis”
operator, P. Similarly, we also need a matrix post-filter that follows the recursive vector-
valued reconstruction process to multiplex the synthesized vector streams into a single
output stream; we denote the filter as a “post-synthesis” operator, Q. In our proposal,
the relationship that defines the demultiplexer operation is given as a dual of the MUX
operator defined in (2.19). For the case of a multiwavelet with multiplicity r = 2, we
can essentially pair up the adjacent discrete-time samples of a given signal f such that
Pk ~ [for, for41]T. Making a similar assumption on the local smoothness of f, we have
far = fory1; hence, py, = ofl, 1]7 for some real constant o. Using (2.29) and (2.31), and
the assumption on the local smoothness of f, we have ﬁ(O)M‘lpL,k = M_lpLyk, where
M is an orthogonal matrix.

Since we hope that M_lpLyk is the 1l-eigenvector of ﬁ(O), we can derive the pre-

analysis and post-synthesis operators as:

®In this case, we have prx = [ f(z)¢r.k(x)dz, where ¢(x) is the scaling function associated with the

scalar wavelet system
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(i) Pre-analysis operator:
P:v— M o,
(ii) Post-synthesis operator:
Q:v— M,
where the orthogonal matrix M has two possible forms:

cosf —sinf sinf cos6
M = or M= , (2.74)

sinf cos@ cosf —sinf

with § = —% when 51(0) = 0, or otherwise § = § — tan™! (%Eg;) for & € (=%, %] Itis
evident that the nature of the components of multiscaling functions has been taken into
account in determining the initial scaling coefficients. Specifically, the pre-analysis filter
is governed by the 1-eigenvector of the refinement mask /ﬁ(O) Suppose that the input

scalar signal f(x) is sampled to give an even-length sequence, xy, ..., z,—_1, then the initial

vector-valued stream, py, ;. is obtained as

M| L (2.75)
L2k+1
It is worth noting that all SAOMFs and SABMFs have [51(0), ag(O)]T in the direction of
[1,0]7 since the multiscaling functions form a symmetric-antisymmetric pair. This gives
0 =—m/4in (2.74).

From Proposition 2.2, it is apparent that if the original multiwavelet possesses GMPs,
then the choice of either pre-analysis filter will still result in a GMP order of at least
(1,1,1). However the choice of a particular matrix M, instead of the other matrix M,
can result in significantly different results in the analysis stage. We have investigated a
number of desirable filter properties to help us determine the better pre-analysis filter
M ! for a particular multiwavelet system. For the primary application in image and video
compression, we found that the following measure of deviation from the ideal “brickwall”
lowpass filter is both reliable and consistent:

2 ™

> / - ()P + [ o) P

Lo

[NIE]
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where I;Bl(w) and I/l\ﬁz(w) are the equivalent scalar lowpass filters associated with the similar-
transformed multifilters. The motivation for using the above objective function is the good
frequency selectivity of the brickwall filter, which will eventually engender higher energy
compaction for most natural images. As a result, we will select the matrix M that gives
a smaller value of E as the pre-analysis filter, P. In order to recover the original signal
(without any quantization), the post-synthesis filter, Q, must satisfy QP = I.

In effect, the proposed pre- and post-filters possess the following desirable properties
that make possible a general and efficient framework for multiwavelet transforms. Since the
orthogonal matrix M is guaranteed to have an inverse, the associated post-synthesis filter
will always exist; thus the proposed multiwavelet initialization technique is robust to work
well with any given multiwavelet systems. Furthermore, the pre- and post-filters have low
computational complexity”. Specifically, multifilters that satisfy Condition SA will have a

very simple matrix
(2.76)

that requires minumum computations.

As the pre- and post-filters are orthogonal, they ensure that some desirable properties
of the designed multifilters such as approximation order, regularity, and phase linearity will
be preserved after pre-analysis and post-synthesis filtering. By careful analysis of (2.75), we
will notice that the proposed pre- and post filters obey a multirate filtering technique that
preserves a compact or non-redundant representation of the input signal. The vector-valued
stream that is generated by the pre-analysis filter is essentially downsampled by a factor of

two to maintain critical sampling of the input signal.

2.4.4 Integrated Discrete Multiwavelet Transforms

This subsection illustrates the process of integrating the proposed pre-analysis and post-

synthesis multirate filters into the vector-valued multiresolution decomposition and recon-

"From an implementation point of view, the pre-filter can be integrated into the first level of multiresolu-

tion decomposition, and the post-filter can be combined with the last level of multiresolution reconstruction.
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Figure 2.3: The proposed multirate pre-analysis and post-synthesis filters that are employed
for the development of a generalized and non-redundant discrete multiwavelet transform
framework.

struction algorithms, with special focus on the discrete multiwavelet transforms of images
(2-D signals).

Figure 2.3 illustrates both the pre-filter and post-filter that are integrated into the
vector-valued multiresolution decomposition and reconstruction algorithms (shown in Fig-
ure 2.2) to produce the proposed generalized framework for discrete multiwavelet transform.
From the block diagram of the pre-filter, it is illustrative how the scalar input stream, xj,
is appropriately downsampled and time-delayed to generate a vector stream, consisting
of the even- and odd-sampled sequences, o and @9 y1. This vectorized stream is then
pre-filtered with the matrix filter M ™! to produce the desired vector input stream repre-
sentative of the input signal, as expressed in (2.75). It is also noted that the downsampling
is necessary for preserving a compact (non-redundant) representation of the original signal
during pre-filtering. The vector input stream can now be fed to the inputs of Figure 2.2
for multiresolution decomposition. In a similar manner, the output streams of Figure 2.2
after reconstruction can be post-filtered to recover the original scalar stream. The block
diagram of the post-filter in Figure 2.3 describes how this is carried out by appropriately
upsampling, delaying, and combining the components of the vector stream into a scalar
stream.

Using the same idea of separable decomposition along each dimension of a 2-D image,
the above multirate pre-filter and post-filter can now be integrated with Mallat’s pyramid
algorithms [84], where tensor products of the 1-D filter banks are used to process 2-D images.
Figure 2.4 portrays the proposed multiwavelet framework for image decomposition. The

multirate pre-analysis filter is first applied to the rows of the image, thus generating the
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Figure 2.4: The proposed generalized and non-redundant discrete multiwavelet decompo-
sition of a 2-D image, illustrating the pre-analysis multirate filtering and the multiwavelet
subband structure of a 2-level transformed image.

vector-valued input streams (see (2.75)). This is followed by the first level of vector-valued
multirate decomposition, as described in (2.69) and (2.70). The same process of multirate
pre-filtering and first-level vector-valued decomposition is then performed on the resulting
row-transformed image, but now along the columns. At the end of this first level of 2-D
multiwavelet decomposition, we have a 16-subband intermediate image. The four subbands
in the upper-left corner of the current intermediate image belong to the approximation
version of the original image, whereas the other subbands constitute the detail versions of
the original image in different orientations. Employing an octave-bandwidth decomposition
structure, the next decomposition level (also along the rows and columns separately) is
carried out only on the approximation version subimage. It is, however, important to note
that there is no pre-filtering performed after the first level of decomposition. As a result, a
L-level multiwavelet decomposition of a 2-D image will produce 4(3L + 1) subbands. The
corresponding multiwavelet reconstruction of a 2-D image can be obtained by performing
all the steps described above for decomposition in the reverse order using the synthesis

multifilters, and replacing the pre-analysis filter with the post-synthesis filter.
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2.5 Experimental Results and Discussions

This section gives a comprehensive analysis of the proposed measure of GMPs, and the pro-
posed generalized multiwavelet transform framework, in the context of image compression.

The following three performance aspects are investigated:

1. The relative importance of GMPs as a multifilter design criterion;
2. The efficiency of the proposed pre- and post-filtering techniques; and

3. The computational complexity of the proposed multiwavelet transform framework.

For consistent and reliable comparisons, we will use a common image codec in all the image
compression simulations presented in this chapter. The SPIHT image coding algorithm [97]
is chosen® for its compression efficiency and popularity. Also, unless otherwise mentioned,
we employed the proposed generalized transform framework for all multiwavelet filters; this

also illustrates the robustness of the proposed framework to work well with any multifilters.

2.5.1 Performance Analysis of Various Multifilter Design Criteria

We will compare and contrast the relative importance of the following siz multifilter design

criteria:

(i) Approximation Order. A higher approximation order of the multiscaling functions
corresponds to higher vanishing moments of the multiwavelets. As signals are pro-
jected onto the space spanned by the multiscaling functions, multifilters with a higher
approximation order usually leads to better energy compaction (or higher coding gain)

[105].

(ii) Regularity/Smoothness. Regularity provides a measure of the smoothness of the
functions. Smoother functions (particularly for the synthesis multifilters) contribute

to reduced checkerboard artifacts in the reconstructed images [23, 105, 115, 116].

81t is important to note that the use of another efficient image codec, such as [5] or [99], will also give

similar relative compression results.
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(iii) Time-Frequency Localization. Finite-length multiwavelet filters provide a flexible
trade-off between time and frequency (scale) localizations. Higher localizations may

contribute to more efficient coding of high-frequency wavelet coefficients [66, 105].

(iv) Linear Phase Symmetry. Phase linearity of a transform is determined by the
symmetry of the multifilters. Symmetric multifilters help reduce phase distortions

around edges and borders of the reconstructed images [116].

(v) Stopband Attenuation. Stopband attenuation measures the passband and stop-
band deviations from the ideal brick-wall filter. A sharper cutoff frequency at the

transition band is useful but it usually results in longer multifilters [105].

(vi) Good Multifilter Properties. GMPs characterize the magnitude responses of
the equivalent scalar filter bank associated with a multifilter. Multifilters possessing
GMPs help prevent both DC and high-frequency leakages across bands, which can

contribute to reduced smearing, blocking, and ringing artifacts [10, 11].

The following seven symmetric-antisymmetric (except for GHM which both scaling
functions are symmetric), orthonormal 4-tap multiwavelets are chosen for the optimality
in their respective multifilter properties: (i) GHM is one of the earliest multiwavelets
constructed using fractal interpolation [40]; (ii) REG has the highest regularity [66]; (iii)
CL4 has the highest approximation order [33]; (iv) JOPT4 has optimal time-frequency
localization [66]; (v) SA4(1) has the highest GMP order of 2; (vi) SA4(2) has the high-
est approximation order while possessing GMPs; and (vii) SA4(3) has optimal stopband
attenuation while possessing GMPs. The Daubechies’ scalar wavelets D4 and D8 [37] are
used for benchmarking purposes. It is noted that only the SA4 family® possesses a GMP
order of at least 1. Table 2.1 summarizes some filter properties of each wavelet filter. The
image compression performance comparisons of the above orthonormal multiwavelet and

scalar wavelet filters are detailed in Table 2.2.

°For example, we obtain SA4(1) when a = v/15/5; SA4(2) when o = (/19 — 2)/3; and SA4(3) when
a = 0.749423.
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Multiwavelets Scalar Wavelets
GHM | REG | CL4 | JOPT4 || SA4(1) | SA4(2) | SA4(3) D4 D8
Reference [40] [66] [33] [66] [11] & [12] [37] [37]
Filter Taps 4 4 4 4 4 4 4 4 8
Orthogonal Yes Yes Yes Yes Yes Yes Yes Yes Yes
Symmetric Yes Yes Yes Yes Yes Yes Yes No No
Approx. Order 2 2 3 2 1 2 1 2 4
Regularity 1.0 | 1.267 | 0.941 | 1.230 * 1.027 * 0.55 1.275
Stopband Error | 0.601 | 0.370 | 0.357 | 0.381 0.346 0.357 0.324 | 0.448 0.317
GMP Order None | None | None | None 2 1 1 N.A. N.A.

Table 2.1: Properties of various multiwavelet and scalar wavelet filters. (*Note that the
regularity of SA4(1) and SA4(3) could not be computed accurately, as limited by the fact
that their approximation orders are less than 2.)

Among the seven length-4 symmetric-antisymmetric orthogonal multiwavelets, we noted
that the SA4 family generally outperforms GHM, REG, CL4, and JOPT4, which do
not possess GMPs. Also, it is clear the SA4(3) multifilter, which possesses a GMP order
1 and has the smallest stopband error, produced the best compression performance. Nev-
ertheless, it is worth noting that the performance of CLA4 is very close to those of SA4. A
closer investigation reveals that CL4 has “near” GMPs, where the magnitude response of
the lowpass equivalent scalar filter vanishes to close zero (=~ 0.051) at w = w. Figure 2.5
will further illustrate the GMPs of the various multifilters. In comparison with the scalar
wavelets D4 and D8 which employ the conventional octave-bandwidth Mallat’s multiscale
algorithm [84], the proposed SA4 multifilters performed better by more than 0.54 dB, in

addition to requiring only half the computational cost of that of D8.

While the SA4 orthonormal family performs well against other length-4 orthogo-
nal multiwavelets and D8, its compression performance is somewhat below some popular
biorthogonal scalar wavelets such as the FBI's D(7/9) [23] and Villasenor’s V(10/18)
[116]. In the pursuit of constructing better multifilters, we have generalized the concept

of GMPs to the biorthogonal setting [13]. As presented in Subsection 2.3.4, we introduced
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CR || GHM | REG | CL4 | JOPT4 || SA4(1) | SA4(2) | SA4(3) | D4 | D8

32:1 || 33.58 | 34.14 | 34.37 | 34.01 34.42 34.33 34.47 || 33.23 | 34.00

Lena 64:1 || 30.52 | 31.23 | 31.40 | 31.14 31.46 31.38 31.50 || 30.24 | 30.97

128:1 || 27.75 | 28.59 | 28.73 | 28.54 28.75 28.71 28.78 || 27.72 | 28.33

16:1 || 31.14 | 31.79 | 32.06 | 31.64 32.13 32.02 32.27 || 30.52 | 31.67

Barbara | 32:1 2744 | 28.15 | 28.23 | 28.07 28.30 28.23 28.39 || 27.12 | 27.86

64:1 24.85 | 25.49 | 25.53 | 2547 25.30 25.93 25.59 || 24.71 | 25.12

16:1 || 33.65 | 34.20 | 34.46 | 34.09 34.49 34.42 34.55 || 33.42 | 33.95

Boat 32:1 || 30.04 | 30.68 | 30.85 | 30.59 30.87 30.82 30.93 || 29.98 | 30.44

64:1 2737 | 27.94 | 28.08 | 27.85 28.10 28.06 28.12 || 27.34 | 27.74

16:1 3251 | 33.02 | 33.12 | 32.96 33.14 33.10 33.18 || 32.41 | 32.66

Goldhill | 32:1 || 29.87 | 30.49 | 30.58 | 30.45 30.60 30.57 | 30.62 | 29.84 | 30.09

64:1 27.83 | 28.45 | 28.50 | 28.41 28.52 28.50 28.55 || 27.80 | 28.00

Table 2.2: Comparisons of PSNR values (in dB) of various orthonormal multiwavelet filters
using different images and compression ratios. Bold entries indicate the best filters for
particular image/CR combinations.

a novel class of symmetric-antisymmetric biorthogonal multifilters (SABMF's) that possess
GMPs. Three SABMFs, namely, BSA(4/4), BSA(5/5), and BSA(9/7), are compared
with D(7/9) and V(10/18). Since the subband structure of the proposed generalized mul-
tiwavelet transforms resembles that of a special case of wavelet-packet decomposition, we
also included the results of D8 that employed the same wavelet-packet subband structure
(denoted as DP8) for a more insightful analysis. The image compression performances
are displayed in Table 2.3. It is very encouraging to note that even the much shorter
BSA(4/4) SABMF can give impressive compression performances as compared to D(7/9)
and V(10/18).

The simulation results above evidently show that the SA4 SAOMFs could achieve very
competitive compression performances even though they have a lower approximation order
than both GHM and CL4, and worse time-frequency localization than JOPT4. Also, the
BSA SABMFs could perform better than almost all other known multiwavelets that do

not possess GMPs, as well as most popular orthonormal and biorthogonal scalar wavelets.
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Figure 2.5: Magnitude responses of the equivalent scalar filters associated with orthogonal
multiwavelets GHM, CL4, JOPT4, and SA4(1).

In conclusion, we have shown experimentally that GMPs are definitely an important set
of multifilter design criteria, though some other multifilter design properties can also be

jointly incorporated in the construction of good multiwavelet filters.

2.5.2 Performance Analysis of Various Pre-Filtering Techniques

It was pointed out that the proposed pre-analysis and post-synthesis multirate filtering
techniques are robust; nevertheless, it will be useful to investigate their compression per-
formances in comparison with two other existing pre-filtering methods. The following three

pre-filters are compared:

(i) Hardin and Roach’s pre-filter (HRP) [50] that is orthogonal and approximation-order

preserving;
(ii) Xia et al.’s pre-filter (XIP) [121] that is interpolatory; and

(iii) the proposed pre-filter (TP) [11] that uses a simple orthogonal transformation.
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Image | CR || DP8 | D(9/7) | V(10/18) || BSA(4/4) | BSA(5/5) | BSA(9/7)
32:1 | 33.64 | 3474 | 34.83 34.77 34.88 34.98
Lena 64:1 30.64 31.75 31.86 31.83 31.85 31.96
128:1 || 28.01 29.04 29.08 29.05 29.05 29.10
16:1 31.99 32.10 32.50 32.46 32.56 32.85
Barbara | 32:1 28.18 28.13 28.32 28.55 28.53 28.73
64:1 25.41 25.38 25.30 25.56 25.68 25.90
16:1 33.62 34.45 34.71 34.86 34.83 34.94
Boat 32:1 30.15 30.97 31.05 31.15 31.15 31.25
64:1 27.54 28.16 28.18 28.31 28.30 28.33
16:1 | 3252 | 33.13 | 33.19 33.29 33.26 33.42
Goldhill | 32:1 |[ 29.90 | 30.56 | 30.63 30.77 30.73 30.75
64:1 27.92 28.48 28.56 28.68 28.65 28.66

Table 2.3: Comparisons of PSNR values (in dB) of various biorthogonal scalar wavelet and
multiwavelet filters using different images and compression ratios. Bold entries indicate the
best filters for particular image/CR combinations.

Since the objective is to compare the significance of different pre-filters, we have

10 multifilter in our simulations.

adopted the popular GHM multiwavelet as the common
Table 2.4 illustrates the PSNR results of the three pre-filtering schemes over a wide range
of compression ratios. It is observed that the TP and HRP methods have comparable
performances while both methods consistently performed better than the XIP method.
However, it should be pointed out that the TP method has lower computational com-
plexity than the HRP method. For the case of GHM multiwavelet, the TP method
requires only one matrix-vector multiplication as compared to two such multiplications for
the HRP method. In addition, for the classes of symmetric-antisymmetric multiwavelets,

it was shown in (2.76) that the TP method requires practically no multiplication, but only

two additions for each input vector.

10The choice of GHM multiwavelet is also motivated by the existing pre-filters which designs are based
on GHM. However, it should be emphasized that the proposed TP framework is robust enough to work

well with any given multiwavelet.
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Image CR || HRP | XIP | TP
8:1 40.22 | 39.61 | 40.40
16:1 36.82 | 36.10 | 36.89
Lena 32:1 33.61 | 32.79 | 33.58
64:1 30.50 | 30.11 | 30.52
128:1 || 27.76 | 27.63 | 27.75
8:1 36.10 | 34.20 | 36.31
16:1 31.11 | 29.54 | 31.14
Barbara | 32:1 27.45 | 26.47 | 27.44
64:1 24.83 | 24.54 | 24.85
128:1 || 23.47 | 23.26 | 23.43
8:1 37.41 | 37.11 | 38.35
16:1 33.34 | 32.73 | 33.65
Boat 32:1 30.00 | 29.53 | 30.04
64:1 27.37 | 27.04 | 27.51
128:1 || 25.27 | 25.05 | 25.25
8:1 35.80 | 34.99 | 36.02
16:1 32.44 | 31.85 | 32.51
Goldhill | 32:1 29.87 | 29.46 | 29.87
64:1 27.83 | 27.55 | 27.83
128:1 || 25.96 | 25.76 | 25.93

Table 2.4: Comparisons of PSNR values (in dB) of different images at different compression
ratios using the GHM multiwavelet but with 3 different pre-filtering methods: (i) Hardin
and Roach’s pre-filter (HRP), (ii) Xia et al.’s interpolation pre-filter (XIP), and (iii) the
proposed transformation-based pre-filter (TP).

2.5.3 Computational Complexity Analysis of Transforms

One important consideration in most practical applications is the computational complexity
of applying a given filter, which directly relates to its implementational efficiency. Such
complexity is generally governed by the number of multiplications and additions involved,
with the former being the dominating factor. In the context of wavelet decomposition (or
reconstruction), these counts are generally directly proportional to the sum of the lengths
of lowpass and highpass filters. However, it is possible to further reduce the multiplication

count if we can exploit any symmetry in the filters.

Scalar Wavelet Filter System

Consider the computational cost of a L-level decomposition (or reconstruction) of an M x N
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image using an octave bandwidth structure. Since each level is subsampled by a factor of
two along the rows and columns, the number of multiplications and additions using a scalar
filter bank system with lowpass and highpass filter lengths'' of F; and F},, respectively, is

given by the 2-tuple
(#mult, #add) = ((Fo + F,) L, (Fy + F, — 2)L) (2.77)

where L=MN (1+ 1+ + 17=7)-
For a linear-phase biorthogonal scalar wavelet, however, we can reduce the multipli-

cation cost by half as the lowpass and highpass filters are symmetrical. In general, the

computational cost of any symmetric/antisymmetric scalar filter can be expressed as

(#mult, #add) = (( {F‘; 1J + {Fh; 1J> L,(Fy+ Fy — 2)£>, (2.78)

where |z] denotes the largest integer that is smaller than z. The cost can be further

lowered if there are embedded zeros, one’s, or entries with identical magnitude in each filter

sequence.

Multiwavelet Filter System

Similarly let F; and Fj, denote the number of non-zero filter coefficients of the matrix
lowpass and highpass filters, respectively. Also denote F), as the number of non-zero ma-
trix coefficients of the pre-filter (or post-filter). In general, the number of multiplications
and additions required for a L-level octave-bandwidth multiresolution decomposition (or
reconstruction) of an M x N image, including pre-filtering (or post-filtering), is given in

(#mult,#add) form by

Cost of pre-filtering 4+ Cost of L-level image decomposition

— (F,MN,(F, —2)MN) + (F‘ Lkl ¥} <F‘ + 2) ,c). (2.79)

2 2

Note that the factor of 1/2 in the second term is introduced by the non-redundant pre-

filtering framework which allows a subsampling by 2, and halving of the input signal length

"Prom a computational viewpoint, the length represents the number of non-zero filter coefficients. It is
also worth noting that filter coefficients that are integer powers of two will require no multiplications but

mere shift operations by the processor.
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Scalar filter | (#mult,#add) (x£) || Multiwavelet filter | (#mult,#add) (x£L)
D(2/6) (3, 6) BSA(4/4) (6, 14)
D(6/10) (8, 14) BSA(5/5) (8, 20)
V(10/18) (14, 26) BSA(6/6) (11, 22)
D(9/7) (9, 14) BSA(8/6) (12, 26)

BSA(7/9) (16, 28)

Table 2.5: The number of multiplications and additions required for a L-level decomposition
(or reconstruction) of an M x N image using the listed scalar filters and multiwavelet filters.
Here the common factor is £L = M N (1 + i 4+ 4 4%1)

[11]. In a similar manner, we will show below that the cost of pre- and post-filtering can in

fact become negligible for the proposed classes of SAOMFs and SABMFs.

Comparison between scalar and multiwavelet systems

At first glance, the requirements for pre- and post-filtering may introduce additional com-
putations. However, as shown in (2.76), it is clear that we will always have, up to a
normalization constant, coefficients of the pre- and post-filters which are £1; hence, they
involve no multiplications, but only addition/subtraction operations. Furthermore, the nor-
malization constant (in this case, %) can be absorbed into the first level and the last level
of the decomposition and reconstruction algorithms, respectively. By exploiting symmetry,
the numbers of multiplications and additions required by using some of the SABMF's are

given in Table 2.5.

From Table 2.5, we observe that the application of BSA(4/4) will demand a com-
putational cost involving a multiplication count of only 2/3 of that for D(9/7), albeit
the addition counts are the same. Both BSA(5/5) and BSA(6/6) have lower addition
and multiplication counts (with 43% and 21% savings, respectively) when compared against
V(10/18). The possible speedup obtained using the proposed multifilters will become more
critical for real-time implementation in video compression. The application of V(10/18) is

also more costly than the BSA (8/6) multifilter which has better compression performance.
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2.6 Conclusion

This chapter investigated a number of open research and application problems related
to multiwavelets. We introduced new classes of previously unpublished orthonormal and
biorthogonal multiwavelets that possess symmetric-antisymmetric pairs of multiscaling func-
tions and multiwavelet functions, and a generalized pre-analysis and post-synthesis frame-

work for multiwavelet initialization.

In doing so, we introduced the idea of an equivalent scalar (wavelet) filter bank system,
which provides an equivalent and sufficient representation of the multiple-input multiple-
output relationship of a given multiwavelet system. We showed that the r equivalent scalar
filters are, in fact, the r polyphases of the corresponding multifilter, and the mulitplexer
operation actually motivated the development of the proposed pre-filtering framework. The
notion of good multifilter properties (GMPs) was then proposed as a new tool for analy-
sis, construction, and application of good multiwavelets for discrete-time signal processing,
particularly in image compression. We also presented the necessary and sufficient condi-
tions for determining the existence of GMPs, explained the eigenvector properties of the
matrix refinement mask associated with multiwavelets possessing GMPs, and defined the
GMP order of a given multiwavelet system. In addition, we applied these ideas to con-
struct new symmetric-antisymmetric orthornormal and biorthogonal multiwavelets. New
methods for direct construction of the matrix highpass filters were presented, and various
multiwavelet systems of different filter lengths were constructed. Next, we introduced a
generalized framework for pre-filtering which is robust enough to integrate well with any
discrete multiwavelets. The framework is also orthogonal, low in computational complex-
ity, and provides a compact (non-redundant) representation of the input signal. Finally,
extensive simulations in image compression verified the significance of GMPs for designing
good multiwavelets, and the efficiency of the proposed pre-filtering framework for discrete

multiwavelet transforms.



Chapter 3

Video Scalability and Scalable

Video Architecture

“Let yourself be open and life will be easier. A spoon of salt in a glass of water

makes the water undrinkable. A spoon of salt in a lake is almost unnoticed.”

Siddhartha Gautama Buddha (563 - 483 B.C.)

3.1 Introduction

The demand for high performance and highly scalable video compression has become more
and more challenging ever since the proliferation of digital video delivery to mass audiences
having disparate viewing requirements over diverse networks. A number of earlier research
works have focused on the generation of such scalable video bit streams in an attempt
to address those needs. Among them, Taubman and Zakhor [110, 111] have pioneered
some interesting work for three-dimensional wavelet compression with video scalability. In
a separate research, we [3, 5] have also proposed a new highly scalable video compres-
sion framework for very low bit rate applications. Recent compression standards such as
MPEG-4 [61] are also geared toward supporting video scalability over a wide range of bit
rates. Not surprisingly, some commercial compression applications are also providing some

(limited) video scalability features, such as Microsoft’s Windows Media Technology and

49
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RealNetwork’s RealSystem, among others. In this dissertation, however, we focus on the
development and implementation of a novel and truly multi-scalable video compression ar-
chitecture that exploits new research results in multiwavelets and multiscale wavelet-based
motion compensation algorithms.

This chapter will first illustrate, in Section 3.2, a few possible scenarios where video
scalability can be useful. This is followed by a discussion of eight desirable video scaling
properties in Section 3.3. A multi-scalable video compression architecture is then introduced
in Section 3.4, where some inherent problems for supporting bit rate, spatial resolution, and
frame rate scalabilities are highlighted. Solutions are then proposed for each of the problems
and we showed how different video scaling properties can be supported simultaneously
within the same compressed bit stream. An insight into how the multi-scalable bit stream

is generated, organized, and parsed will also be presented.

3.2 Scenarios for Video Scalability and Communication

The principal idea of video scalability essentially refers to the fact that the video bit stream
may be flexibly manipulated after the compresed bit stream has been generated. Such a
capability is obviously very important and appealing for many multimedia applications,
especially in scenarios where detailed knowledge of the potential disparate clients may not
be available in advance at the time of generation of the compressed video source. The
heterogeneity that is inherent in the diverse network infrastructure and end systems’ pro-
cessing and display capabilities has continually challenged the need for scalable algorithms.
In a more general setting, however, video scalability need not only be constrained to scaling
after the generation of the compressed source, but the video bit stream scaling can actually
be carried out in either one or a combination of the following three stages: (i) during the
generation of the compressed video at the source producer end; (ii) during the dissemina-
tion of the (packetized) compressed video at the transmission network layer; or (iii) during

the decoding and reconstruction of the received video at the source consumer end.

In the scenario of stage (i), the source producer may need to have access to some prior
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knowledge of the specifications (requirements or constraints) of a particular source consumer
before compressing the video source. The video encoder can then tailor, say, the target bit
rate of the compressed video to meet the required specifications. Such an approach is ideal
in a unicast (point-to-point) situation where the source producer encodes and serves each
client independently. However, in most situations such as in a multiparty or on-demand
environment, detailed specifications of each client may be substantially different; the details
may also be not known in advance at the time of encoding, and they may change with time
as the network traffic fluctuates or when the client’s system load varies during the session.
From a networking viewpoint, some remedial strategies such as network traffic monitoring,
feedback, and policing can be employed to inform the source producer to reshape the
instantaneous bit rate of the compressed video. Such an adaptive rate control mechanism
may work very well in a unicast situation or when the various clients are requesting for
the same bit rate. However, in the event of heterogeneous client specifications, a simple
feedback control will not suffice. The source producer will now need to generate different
compressed versions of the same video, with each version having a different bit rate, for the
various clients. This is obviously counter-productive from the viewpoint of data compression
or effective network bandwidth utilization. A very promising solution to this problem is
to generate one highly scalable video bit stream that meets the bit rate and resolution
requirements of the most demanding client. Different subsets can then be selected from the
same scalable bit stream to generate several lower-specification versions that will satisfy
individual client specifications independently. This scalable capability could possibly be the
best and most efficient solution for on-demand environment where heterogeneous clients
request for the same video source stored in a video server. The main advantage here is
obvious since only one compressed video is actually needed, and scalability will take care

of the client and network heterogeneity.

In the second video scaling scenario, we illuminate the point that a highly scalable
video codec may still need the support of a scalable network architecture and protocol in
order to achieve truly scalable video distribution. This is especially true in a multipoint

connection environment such as multiparty video conferencing or collaboration, and live
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video broadcasting. In a unicast or point-to-point connection, the source producer can select
only the pertinent video packets from the generated scalable video before transmission to the
source consumer. However in a point-to-multipoint or multipoint-to-multipoint connection,
a network that affords scalable video distribution, such as the Internet Multicast Backbone
[38] (MBONE!), will be an integral component of a scalable video communication system.
Using MBONE, the source producer can assign the various subsets of a scalable compressed
video, which correspond to different video scalings, to different multicast nodes (groups).
Clients with disparate decoding specifications can selectively subscribe to and unsubscribe
from various multicast groups to dynamically reshape their respective video bit rates and
video resolutions according to what they want, independently of the other clients. This
scenario is significantly different from the previous video scaling scenario since the source
producer does not need to know or anticipate the differing clients’ requirements during
compression. Another viable solution is to prioritize the video packets in such a manner
that the network will automatically discard low-priority packets in the face of network
congestion. A highly scalable video codec will generate better refinement layers for improved
packet prioritization. However, this approach also requires that the network routers and
switches to be intelligent and conform to certain established packet prioritization protocols

(e.g. ATM network allows the specification of priority of cells).

In the third video scaling scenario, video scalability is performed at the client side.
Once the client has received the compressed video packets, he or she can still choose to
decode and playback only a portion of the received packets. This down-scaling of the video
bit rate and display resolution may be motivated by a number of factors at the client
side such as constraints on CPU processing power and display resolution. However from
the viewpoint of network bandwidth utilization, it is noted that this does not effectively
result in true bit rate scaling since considerable network bandwidth would have had been
consumed to first receive all the video packets. The same bandwidth usage also applies to

video resolution scaling if the scalable decoding is to be carried out only after receiving the

!The MBONE is a virtual network that is layered on top of sections of the physical Internet. An
informative online guide can be accessed via “http://www.3com.com/nsc/501303.html.”
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full-resolution video bit stream. Nonetheless, such wastages in network bandwidth will not
occur if the actual bit rate scaling performed by a client at any given time is defined as the
total number of video packets that the client has received so far. Progressive browsing is
a very useful application exploiting this scalability feature. For example, consider a client
who is browsing a large digital image from a huge medical image database or a digital art
gallery. As more packets are progressively received, the client can decode and reconstruct a
higher quality version of the image. Once an intelligible image can be discerned, the client
can now make a decision to either continue receiving and further improving the image
quality, or to terminate browsing the current image and select another image. If the client
ultimately chooses to stop browsing the image, the actual total bandwidth consumed is only
as much as the total number of packets received up to the instance of termination. In this

scenario, the bit rate scaling is tightly coupled to the actual network bandwidth scaling.

3.3 Desirable Video Scalability Features

Video scalability is primarily concerned with the flexibility of manipulating the digital video
sources for efficient storage and customizable delivery of the video to a wide pool of hetero-
geneous clients over diverse networks. Digital video, as a multidimensional signal, allows
many possible specifications such as the picture quality, picture size, picture playback rate,
and picture color depth. The ability to scale and choose different combinations of these
video specifications is crucial for simultaneous distribution to disparate clients. We denote
the different scalable video features as video scaling parameters, which characterize the flexi-
bility of the compressed video sources in supporting a “generate-once, scale-many” concept.
In the following subsections, we will describe eight desirable video scaling parameters —
bit rate, distortion, spatial resolution, temporal resolution, alphabet, hardware, complexity,

and object scalability.
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3.3.1 Bit Rate Scalability

Bit rate scalability allows a party (either a source producer or consumer) to gracefully
scale for a wide range of different data rates from the same scalable video source. Such
heterogeneity in bit rate can easily span a dynamic range from less than 9.6 kbps for
wireless connections to over 100 Mbps in Ethernet and ATM network environments. From
the viewpoint of network communications, it is evident that video bit rate scaling is closely
related to network bandwidth utilization scaling. To realize this, the client must have a
means to specify and receive only the relevant subset of the compressed video bit stream
that meets a specific target bit rate. In fact, having bit rate scalability also allows precise
bit rate control at both the source producer and consumer. Due to constraints in effective
network bandwidth, it is very desirable to have constant bit rate (CBR) videos; however,
this usually results in intermittent fluctuation of video quality around frames with high
motion content. Although precise bit rate control can be obtained at both the encoder and
decoder, it may not be very useful in practice when the compressed bit stream is packetized
for transmission over a network. In this case, it would be sufficiently flexible if the codec
can provide granulated bit rate scaling in terms of multiples of the average packet size?.

On the other hand, precise bit rate control can be useful for scalable image compression

where a particular compressed image size is needed for storage in a diskette, for example.

3.3.2 Distortion Scalability

Distortion scalability, also referred to as signal-to-noise ratio (SNR) scalability, allows a
party to select different levels of video quality (or fidelity) from a common compressed
video bit stream. Generally, the video quality (both objectively and perceptually) improves
as more video data (packets) are used to reconstruct the video. As a result, there is an
intrinsic one-to-one relationship between video bit rate scalability and video distortion scal-

ability, if all other scaling parameters remain unchanged. However unlike bit rate scaling,

2Some latest commercial codecs such as Microsoft’s Window Media Encoder and Real Networks’ Real-
Producer also allow the specification of multiple bit rate settings in one compressed bit stream in order
to target both dialup modem and high-bandwidth users. However, once the bit stream is generated, the

consumers are restricted to choose only from the few preset bandwidth settings.
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distortion scaling aims to provide flexibility in controlling the average quality of the play-
back video. Constant distortion rate, or commonly known as variable bit rate (VBR), video
is a very desirable feature in which the instantaneous video bit rate is allowed to fluctuate
(within certain limits) so as to guarantee a smooth overall quality of the entire video. For
example, the average bit rate will increase when encoding intra-coded frames or inter-coded
frames that contain considerable amount of motion. In fact, VBR encoding helps to re-
duce the overall stream data rate without perceptible quality loss by dynamically dropping

bandwidth during static scenes that are easier to compress?.

3.3.3 Spatial Resolution Scalability

Video spatial resolution scalability refers to the flexibility to support different display res-
olutions (or picture sizes) by means of selecting different pertinent subsets of a common
compressed video bit stream. This video scaling parameter essentially allows a consumer
to play back the same video on various display devices with disparate display resolutions.
Higher spatial resolution obviously displays crisp clear pictures; on the other hand, lower
spatial resolution inevitably destroys fine details and compromises clarity. For example, on
the lower end of the display resolution spectrum, a personal digital assistant (PDA) such
as a Palm handheld has only 160 x 160 pixel resolution, while a high-end monitor can
support a display resolution of more than 1600 x 1200 pixels per inch. The capability of
scalable video to simultaneously support a broad range of display resolutions is key in a
heterogeneous multiparty environment, which can span the range from very high-resolution
devices such as high-definition television (HDTV) [51] to very low-resolution gadgets such

as PDAs and mobile phones.

3.3.4 Temporal Resolution Scalability

Video temporal resolution scalability empowers a consumer with the flexibility to choose

different video frame rates for playback from a common compressed video source. A higher

3Real Networks’ latest RealSystem 8 employs a two-pass encoding strategy that helps identify these
easy-to-compress sequences, thus enabling the encoder to steal bandwidth from these scenes and use it for

hard-to-compress scenes to improve the overall quality.
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frame rate will allow smooth motion rendition, while a lower frame rate causes perception
of jerkiness. For example, the standard temporal resolution for HDTV is 60 frames per
second (fps); the corresponding standards for PAL*, SECAM®, and NTSC® systems are 25,
25, and 30 fps, respectively; and some low-end devices can play back only as low as 1-10 fps.
Scaling of video playback frame rate is in fact one of the best choices for bit rate scalability
while preserving the average video quality level. Alternatively, we can also reduce the frame

rate to exchange for improved video frame quality at the same video bit rate.

3.3.5 Alphabet Scalability

Alphabet scalability refers to the capability of the same compressed video bit stream to
support decoding with a different alphabet size (e.g. color depth) in all the pixels of a video
frame. This can range from just 1-bit (black and white) to 8-bit grayscale, and from 16-bit
color to 24-bit color. Some lower-end devices such as the Palm PDA handheld can only
support a 2-bit or 4-bit grayscale LCD display. The flexibility to simultaneously support a
multitude of devices with varying display color depths using only one compressed video bit
stream is also an object of video scalability. Generally, it will be very useful if a compressed
color video source can be scaled for either an 8-bit monochrome or a 24-bit true color video
to suit different display requirements. For example, alphabet scalability can be achieved by
encoding the luminance and chrominance channels separately, and subsequently the decoder

may discard the chrominance channels if only an 8-bit grayscale video is required.

3.3.6 Hardware Scalability

Hardware scalability provides the ability to gracefully trade-off different video specifications

for some physical hardware constraints at both the source producer and consumer ends.

*PAL stands for Phase Alternating Line is a color television standard that is used in West Germany, The
United Kingdom, parts of Europe, South America, parts of Asia, and Africa. The PAL system transmits
625 lines at 25 fps with 2:1 line interlacing.

SSECAM stands for Sequential Couleur & Mémoire (or sequential chrominance signal and memory) is
used in France, Eastern Europe, and Russia. The system uses 625 lines at 25 fps with 2:1 line interlacing.

5The NTSC system is widely used in North America and Japan, and uses 525 scan lines per frame, 30

fps, and two interlaced fields per frame.
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The total main memory capacity at an encoder or decoder, for example, can impose serious
limitations on the maximum number of temporary video buffers during processing. To a
large extent, memory constraint also limits the maximum supported video spatial resolution
and frame rate. The heterogeneity in memory capacity can range from only 2 MB of
physical memory in a typical handheld PDA to more than 256 MB of physical memory
in a high-end PC or workstation. The amount of on-board graphics memory can also
be another constraining factor on the various combinations of display resolution and color
depth, which subsequently influence the preferred choice of video spatial resolution and color
depth for playback. Obviously, the maximum supported display resolution of the monitor
or display panel will also affect the choice of video spatial resolution. Similarly, a 56 kbps
dialup modem or a 9.6 kbps wireless connection will need to scale down (this could be a
combination of spatial resolution, frame rate, and bit rate) the effective data rate received
as compared to DSL, cable, and ATM connections. Other important hardware scalings
may include CPU processing power, battery life span’, network connection bandwidth, and
network latency®. Hence, a scalable video bit stream can provide the flexibility to select

different combinations of video scaling parameters to meet disparate hardware constraints.

3.3.7 Complexity Scalability

Complexity scalability refers to the graceful trade-off between the computational complexity
and rate-distortion performance of the video encoder and/or decoder by means of scaling
for different subsets of a common compressed video. Computational complexity naturally
corresponds to the CPU processing speed during encoding and/or decoding. In fact, it is
rather intuitive that computational scaling can be achieved indirectly by choosing different
sets of video scaling parameters. A lower video spatial resolution and video frame rate, for
example, will directly contribute to fewer computations that meet the processing limitations

of low-speed devices, such as the Palm PDA that operates at 16-33 MHz. At the other end

"This hardware constraint can become a serious consideration factor in mobile devices such as laptops,
PDAs, and mobile phones. Scaling for lower video specifications can reduce the processing load and cut
down on battery energy comsumption.

8Network latency can vary from about 200 - 400 ms in wireless medium to only about 1 ms in Ethernet.
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of the processing speed spectrum, a powerful workstation with a 500 MHz to 1.8 GHz CPU,
or specialized hardware with parallel processing capability, can process many times faster.
Since real-time encoding and decoding is critical in many video applications, a scalable
video coding algorithm should provide the flexibility to the lower-end processors to scale
down the video frame rate, for instance, in order to maintain real-time encoding and/or

decoding.

3.3.8 Object-Based Scalability

Object-based scalability is often associated with the idea of content-based scaling, where
independent objects or sprites can be added, manipulated, and removed easily, either during
the generation of the compressed video source, or after the compressed video bit stream has
been generated. Object scaling provides the key to interactivity. Nevertheless, this mode
of video scalability is rather different from the other video scaling parameters described
above. In order to support object scalability, the compression algorithm cannot just treat
a video frame as a two-dimensional signal, but in fact it must perform accurate foreground-
background segmentation of the video, and efficient object-oriented or region-based coding

of arbitrarily-shaped objects.

3.4 A Multi-scalable Video Compression Framework

In Section 3.3 we have discussed eight desirable video scaling parameters and understood
how each type of video scalability can be useful in a heterogeneous environment. The
purpose of this section is to introduce a novel multi-scalable video compression framework
using a multiwavelet decomposition structure. In particular, we will investigate and propose
solutions to address the issues of bit rate, spatial resolution, and frame rate video scala-
bility. More challengingly, the proposed framework will support the different video scaling
parameters simultaneously with fine granularity in the same compressed bit stream. The
following subsections 3.4.1 — 3.4.4 will provide insights into the various video scaling param-

eters that are supported by the proposed scalable framework. Some inherent problems that
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impede the development of a highly scalable video compression framework are illuminated,
and solutions proposed to overcome the shortcomings. In subsection 3.4.5 we proceed to
explain the generation of a highly scalable video bit stream, and show how the subsets
of the scalable bit stream are judiciously organized to support simultaneous scalability of
the various video scaling parameters with fine granularity. Combining the solutions in this
section, detailed algorithm development of the multi-scalable video compression framework

will further be discussed in Chapter 5.

3.4.1 Bit Rate Scaling and Some Related Problems

As described earlier, bit rate scalability offers the decoder the option to selectively decode
and reconstruct a smaller subset of the encoded bit stream. In order to achieve this, the
encoder usually has to generate the bit stream in multiple coding layers. Typically, a base
layer is first generated, and followed by a few refinement layers where each additional layer

will further improve the fidelity of the reconstructed signal.

For the case of video coding, consider an input sequence of frames, f,, where n =
0,1,..., which are to be encoded using a conventional hybrid motion estimation and motion
compensation scheme. In this scheme, the first frame, fj, is usually intra-frame coded with
no dependency on any other frames. Each of the following frames, fi, fo,..., will then be
inter-frame coded® by first estimating a prediction of the frame of interest and then encoding
the associated prediction error frame. Motion estimation and compensation is commonly
used to account for the motion changes between the current frame and a previously encoded
(reference) frame. The motion vectors, v, as well as the displaced frame difference (DFD),

E, are encoded and transmitted to the decoder. Let the motion field for frame f,, be
On = ME(fn, fa1) (3.1)
such that the corresponding prediction error frame

E, = fn - Mc(fnflu 'Un)a (3'2)

YMPEG, for example, employs a group of pictures concept where every other 16'* frame is encoded using

an intra-frame coding mode.
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where ME and MC are, respectively, the motion estimation and motion compensation
operators, and fn,l is the previously reconstructed frame representing the reference frame.
In order to support bit rate scalability, £, is encoded in, say, L embedded coding layers

such that

O = {0, et

n *-n

In the conventional hybrid coding scheme, the reconstructed frames at the encoder are given
by

fé{ﬂ = MC(]?TEL), Vnt1) + Efzﬁ—)l (3.3)

Let the sequence, g,, denote the reconstructed frames at the decoder. Assume now
that the decoder scales down the bit rate by decoding only a subset of the L layers of F,
(k)

. . k
to recover a coarse approximation, Ey,

E}lk) = {(e%o), . e%Lil)) |e7(1k) =R (e%kil)) } ,

where k = 1,2,..., L. Hence the reconstructed frame, g,+1, is given by

, by means of a reduce operator R(.) such that

g = MC@GP, vnp1) + B

if the decoder selects only the first £ coding layers. Since the decoder would not have a

copy of gr(f), which was used as the reference frame by the encoder, the coarser version of

the reconstructed frame, gﬁl’“), is used to reconstruct the next frame. Also the same motion
vector field, v,4+1, which was estimated at the encoder, is applied at the decoder. It is

noted that even if the decoder were to recover all the L coding layers of the current frame

now, the reconstructed frame will be
(L - L
A = MCEP, ) + B (3.4)

This also means that the decoder can never recover the originally encoded video frames
once it has started to scale down the bit rate. An error, D, between (3.3) and (3.4) can be

written as
k A(I (L
DT(H-)I = ¢ {fé+)1 - 97(L+)1}

= {MC(FP,v0i1) = MCGP, 01},



CHAPTER 3. VIDEO SCALABILITY AND SCALABLE VIDEO ARCHITECTURE 61

where £ is some error function such as the mean squared error. This is known as the
prediction error drift that will propagate and grow larger in magnitude as the decoder

recursively reconstructs subsequent frames with only & coding layers.

The key to avoiding the prediction error drift problem is to ensure that the predicted
frame, g&’“) = MC (ggi)l,vn), at the decoder is always identical to the corresponding pre-
dicted frame, f,&’“) = MC( fé@l,vn), at the encoder, for all n. Some solutions such as the
drift correction schemes have been presented [86]. In this dissertation, we propose a simple
prediction frame “locking” mechanism that fixes the coding of the prediction error frame
to a certain predetermined coding level'?, R (67(7,[(71)>, for some fixed value K. To do so,
the encoder keeps a copy of the reference frame, f,EK), when it reaches the coding layer K
while encoding the displaced frame difference, E7(1L), in a successive approximation manner,
where K < L. Although the encoder may continue to encode the succeeding coding layers,

e,(zK), e%KH), . ,e%Lil), it uses the predetermined (fixed) reference frame, f,SK), for motion

estimation and compensation. The decoder locks onto the same reference frame, g,(f(), by
also keeping a copy of it for subsequent motion compensation. In other words, we will
ensure that the reference frames used for motion compensation are always maintained in
synchrony (i.e. f,SK) = gﬁf() for all n) at both the encoder and decoder. In this manner,
the decoder may also continue to decode succeeding coding layers of F,, to further improve
the fidelity of the reconstructed video frames without breaking the “lock”, but only at the
expense of a higher decoding bit rate. Nonetheless, in order to avoid any prediction error
drift, it is worth noting that the proposed “locking” mechanism does introduce a minimum

decodeable bit rate constraint (i.e., the bit rate for representing the first K coding layers)

on the scalable video bit stream that is generated by the encoder.

As we will introduce later in subsection 4.4.2, the proposed motion estimation and
compensation is performed in the (multi)wavelet transform domain instead of in the image
domain. In this case, the “locking” mechanism is enforced at a subband resolution scale

level while performing motion compensation at either the encoder or the decoder. Some

10 Alternatively, we can also specify a certain predetermined base data rate such that the “locking” mech-

anism is activated when the encoding (or decoding) process reaches the base reference byte.
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experimental results on the effect of choosing a different reference rate control to “lock” the
reference frames are shown in subsection 4.5.2. More detailed explanations, including block
diagrams, will be presented in subsections 5.3.3 and 5.4.2 when we delve into the proposed

scalable video encoding and decoding algorithms.

3.4.2 Spatial Resolution Scaling and Some Related Problems

A compressed video bit stream that supports spatial resolution scalability will allow a
scalable decoder to separately select only subsets of the bit stream that are pertinent to
the reconstruction of a lower spatial resolution video. Ideally, this will also mean that the
decoder will not receive and process all portions of the compressed bit stream and motion
vectors that correspond to the unwanted higher spatial resolution scales. Since a scalable
encoder does not have apriori knowledge, at the time of encoding, about the possible scaling
configurations that will be selected by different decoders, the encoder must generate both
the motion vectors and prediction error frames in a certain top-down manner such that the
portion of the bit stream that corresponds to a particular resolution scale is not dependent
on any information contained in other portions of the bit stream that correspond to all
higher resolution scales. Otherwise, a loss of prediction loop will occur when the decoder
scales down the spatial resolution and performs motion compensation using a different

version of the reference frame than that was used by the encoder.

Consider again the estimated motion vector field, v, and the prediction error frame
or, I/, as defined in (3.1) and (3.2). Here the encoder has computed these quantities with
respect to the full frame spatial resolution. The problem arises when the decoder has to
scale down both v and E while reconstructing the video at a reduced spatial resolution.

Suppose we denote the frame sequence at the decoder as
g8 = T(gn,s), n=0,1,...,

where the spatial scaling operator, 7 (g, s), essentially reduces each dimension of g by a
factor of s = 1,2,... via some fixed operations. Now consider a scenario in which the

decoder chooses to reconstruct a spatially reduced video sequence (with a spatial scaling



CHAPTER 3. VIDEO SCALABILITY AND SCALABLE VIDEO ARCHITECTURE 63

Figure 3.1: The subband structure of a 3-level multiwavelet transform. The three crosses
represent the markings that will demarcate the bit stream so as to support three possible
levels of spatial resolution scalability.

factor, S), g,[f], n =0,1,..., from an encoded full-resolution video. To do so, the decoder

must also scale both v, and E,, accordingly; this will generate

Gl = MC(G) | T (00, 9)) + T(En, S),

where I is also a spatial scaling operator, which may or may not be the same as 7. Since MC
is not a linear operator, the spatially-reduced predicted frame, g,[f] = MC(gLS_}l, [(vy, S)),

will gradually drift out of synchronism with the full-resolution prediction error frame, E,, =

fn — MC(fp—1,vy,), which was generated at the encoder. This is because
T(En,S) # T(fn,8) = MC(T(fu-1,5),T(vn, S)).

This loss of prediction loop will propagate as the spatially-reduced frame decoding process

continues.

Several proposals have been made to achieve spatial resolution scalability. Among
these, the approach of using resolution pyramids that decomposes each frame into multi-
ple resolution layers for motion compensation and coding is commonly employed (e.g. in

MPEG-2 [60], MPEG-4 [61], and [63]). A method for securing the prediction loop was also
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proposed by Cheng and Kuo in [29]. There, motion prediction of high-frequency subbands
at a particular resolution scale is achieved by first performing motion estimation using the
next higher resolution low-frequency subbands. A single-scale forward wavelet transform
is then applied on the motion predicted lowpass subband, and the corresponding highpass
subbands of the decomposition will constitute the motion predicted high-frequency sub-
bands of interest. Clearly, this approach introduces additional computation complexity
with multiple forward and inverse wavelet transforms on different resolution scales dur-
ing the encoding and decoding processes. In this dissertation, we employ a more efficient
spatially scalable motion compensation framework with top-down multiresolution motion
estimation in the multiwavelet domain. Subsection 4.4.2 will further explain how the spa-
tially scalable motion vector field and prediction subband error for each resolution scale
can be generated without significant processing overhead. Also, we will not only secure the
prediction loop but also be able to simultaneously support bit rate scalability, as described

earlier.

3.4.3 Temporal Scaling and Some Related Problems

The earlier subsections have addressed the issues of supporting bit rate and spatial resolu-
tion video scalability. The remaining question is how we can also simultaneously support
frame rate scalability in the same compressed bit stream. As can be appreciated from the
above exposition, the key to securing the prediction loop depends heavily on the ability
to maintain synchonization of the reference frame in both the encoder and decoder when
different video scaling parameters are chosen at the decoder. Recall that the encoder would
not have apriori knowledge during the encoding process about the different scaling parame-
ters that disparate decoders may select after the compressed bit stream has been generated.
This motivates the need for the encoder to determine judiciously a common reference frame
that the decoder can later use for motion compensation, as long as the decoder selects a
frame rate that is within the allowable temporal resolution scaling as determined by the
encoder. The following explains how the common reference frame can be determined by

means of defining a temporal hierarchy structure:
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Let D := {dy,dy,...,dy € Z% : d, = 2571} be a small set of frame rate divisors that
describes the granularity of allowable frame rate scaling, where N is some fixed positive

integer that defines the dimensionality of supported video temporal scalability. For example,
D =1{1,2,4,8,16}

represents N = 5 different supported temporal scaling layers — full, half, quarter, one-
eighth, and one-sixteenth of the encoded frame rate — that can be chosen from a particular
scalable video bit stream. Denote F,; as the collection of indexed frames, f,,n =0,1,...,

that is represented by a frame rate divisor, d € Z™, such that
Fi:=A{fn:nmod d=0}.

Clearly, F4 comprises all the indexed frames that support video temporal scalability by a
scaling factor d. Also, let D, C D denote the subset of frame rate divisors whose respective

collection of indexed frames contains a particular indexed frame f,; i.e.,
D, :={deD: f, € Fs}.

In the temporal hierarchy structure, we define the reference frame, Ry, , as the previ-
ously encoded frame which is used to perform motion compensation for the current frame
of interest, f,. Ideally, Ry, should also be a previous frame that is as close as possible to
fn; otherwise, the accuracy of motion estimation may be further impaired. Using the above

notation, we define the frame index, r, for the reference frame R, as
max {r <n:r AD, =0}, (3.5)

where {m A D,, = k} is defined as {m € W :Vb € D,,, m mod b = k}.

For a certain fixed dimesionality, N, of supported temporal scaling layers, the choice
of Ry, for a particular frame of interest, f,, could be different. Figure 3.2 illustrates the
temporal hierarchy structure for N = 4. The vertical axis represents the temporal scaling
layers, £ = 1,2,..., N, where £ = 1 denotes the encoded full frame rate. It is noted
that these temporal layers correspond to the frame rate divisors of D. The horizontal axis

represents the index number of the frames, f,, n = 0,1,..., which are denoted by the
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Figure 3.2: A temporal hierarchy structure that illustrates the choice of common reference
frames for supporting N = 4 temporal scaling layers.

vertical bars. Each frame is assigned to a temporal scaling layer in such a manner that the
lowest resolution temporal layer (i.e. N = 4) is populated first with the frames k2V~! for
k = 0,1,..., and then followed by the next higher resolution temporal layer. Using the
definition of common reference frame in (3.5), we can determine the Ry, for each frame f,,
which is shown by the arrow that points to it. The definition in (3.5) has also ensured the
choice of the closest possible reference frame for a given N. Hence, the maximum distance

between the current frame and the reference frame is bounded by 2V—1.

It can be seen from the figure that the choice of a reduced temporal resolution by the
decoder will not compromise the temporal prediction loop that is used by the encoder. For
example, suppose that the decoder chooses to reconstruct at only half of the encoded frame
rate (i.e. all the frames in temporal scaling layers 2, 3, and 4 only.) In this case, we have
the reference frames Ry, = fo, Ry, = fo, Ry = f1, Ry = fo, and so on. It is evident that
the decoded frames, fs,, at half the encoded temporal resolution are still employing the
same reference frames for motion compensation as those reference frames that were used
by the encoder while encoding at full temporal resolution. Hence, the temporal prediction
loop is still preserved even when the decoder were to scale down its frame rate after the

bit stream has been generated. It is, however, noted that the price to pay for temporal
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scalability with this scheme is that performance at full frame rate could be less accurate
than the non-scalable scheme which uses adjacent reference frames for motion prediction
at full frame rate. A similar temporal layering structure was also proposed by Lee et al.
([75], [76], [77]), where temporal video scalability is made possible. However, the main
contribution in the dissertation is to carefully integrate the temporal hierarchy structure
for multiresolution MEMC in the wavelet domain (instead of the spatial domain) with
a recursive embedded coding framework. The details are given in subsections 4.4.2 and
5.3.2. As a result, the proposed multi-scalable video compression architecture does not
only support temporal video scalability but also simultaneously support bit rate, spatial

resolution, and color scalabilities with the same compressed bit stream.

3.4.4 Alphabet and Complexity Scaling

As described earlier, alphabet scalability refers to the capability of the same compressed
bit stream to support decoding with different pixel depths. In particular, we are interested
in reconstructing either an 8-bit grayscale or a 24-bit color video. In this dissertation,
the proposed multi-scalable bit stream will also support alphabet scalability in addition
to bit rate, spatial resolution, and frame rate scalings. To do so, we will encode the
luminance component (i.e. Y channel) of a color frame separately from the corresponding
chrominance components (i.e. U and V channels). As it will become more evident in
subsection 5.3.2, the encoder will process, in each coding layer, all the subbands in the
luminance component prior to processing the subbands in the U and V channels. As a result,
the compressed bit stream will be partitioned into distinct luminance and chrominance
segments. This subsequently allows the decoder to decode only the luminance segments in

order to reconstruct a grayscale video, or decode all segments to reconstruct a color video.

Complexity scalability is a direct consequence of a combination of other video scal-
ing parameters. This may refer to both encoding as well as decoding complexity scaling.
Complexity scaling at the encoder side can become critical in situations where real-time
encoding is required, such as in video conferencing. The processing requirements can be

scaled down significantly by encoding at a reduced spatial resolution, frame rate, and bit
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rate. This, however, constrains the allowable scaling selection at the decoder end. In a
similar manner, complexity scaling at the decoder can be achieved by selecting a combi-
nation of lower decoding specification from the allowable video scaling selection of a given
scalable compressed bit stream. In this dissertation, we will be able to provide implicit com-
plexity scalability in the same video bit stream through the flexible selection of different

combinations of bit rate, spatial resolution, frame rate, and color scalings.

3.4.5 Generation and Organization of Multi-Scalable Video Bit Stream

In earlier subsections, we have provided insights into the possible problems that could im-
pede the generation of a multi-scalable compressed video bit stream, and proposed solutions
to support the various video scaling parameters. This subsection will further illuminate how
the multi-scalable bit stream is generated and how the various scalable segments are or-
ganized within the bit stream in order to support the following video scaling parameters
simultaneously: frame rate, bit rate, distortion, spatial resolution, color, and decoding
complexity.

Figure 3.3 shows a cross-sectional view of the video bit stream that is generated by the
proposed multi-scalable video compression architecture. At a coarse level, the bit stream

is composed of four embedded resolution layers, as described below:

e Frame block (FB): The portion of the bit stream in each FB comprises all the
encoded information of one video frame, which is using either an intra-coding or
inter-coding mode. Usually, FB; is encoded as an intra-coded frame. The shaded
segment of the bit stream that precedes each FB represents the header information
for the FB. It contains sufficient information about the FB in order to support frame
rate scalability. While decoding at a reduced temporal resolution, some FB’s can
be discarded accordingly without breaking the temporal prediction loop by means of
choosing the appropriate temporal scaling layers from the temporal hierarchy struc-
ture, as explained in subsection 3.4.3. For example, all FBy,, n = 1,2,..., can be

discarded when decoding at half the encoded frame rate.



CHAPTER 3. VIDEO SCALABILITY AND SCALABLE VIDEO ARCHITECTURE 69

VH FB, FBo FBr
- B —
— —
— —
- —
— - —
LBl LB2 LBL
| T T -
re T = =
Vi RDB; Vo RB> Vr RBr
/ B - - \ - - — —_—
/ N - - - - - —_—
CBy CBy+CBv

Figure 3.3: Organization of the proposed multi-scalable video bit stream hierarchy that
supports simultaneous fine-granularity video scaling in terms of frame rate, bit rate, distor-
tion, spatial resolution, color, and decoding complexity. The VH portion denotes the video
header information for the entire compressed bit stream, while V,,, n = 1,... , R are the
motion vector fields for each resolution scale (they are present only in the first LB.)

e Layer block (LB): As explained in subsection 3.4.1, each frame is encoded in multi-
ple coding layers counsisting of a base layer and several refinement layers. This coding
strategy is manifested as a cascade of LB’s within each FB. Supposed that frame f;
was encoded with L coding layers. During the decoding process, each LB is processed
in a sequential manner starting from LB; until a certain target byte that is allocated
for the particular frame is reached. Clearly, by decoding up to LB, will reproduce a
frame with higher fidelity than just decoding until LB,,, where £ > m. Therefore,
bit rate scalability can easily be achieved from the same compressed bit stream by
terminating the decoding at any time when the target byte is met. Similarly, the
decoder can also scale for different distortion levels during the decoding process. By
employing the prediction frame “locking” mechanism proposed in subsection 3.4.1, we

require that a certain number of minimum coding layers be processed, say, K layers.

Hence, by choosing £, m > K, we ensure that the prediction frame that is used for
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motion compensation during decoding is identical to that used at the encoder.

e Resolution block (RB): This layer is responsible for supporting spatial resolution
scalability. Assume that the encoder generates a scalable bit stream that supports
R allowable spatial resolution scales, thus producing R RB’s within each LB. For an
inter-coded FB, the first LB will also contain the motion vector fields, as denoted
by the Vi,..., Vg segments preceding the corresponding LLB’s. The shaded segments
represent the header information for the respective RB’s. It is worth pointing out
again that the multiresolution motion vector fields are organized in such a manner
that all the motion vectors belonging to a particular supported resolution scale are
encoded just before the corresponding bit stream segment representing the encoded
prediction frame (subband) error. As a result, the decoder can easily ignore the
motion fields of any (higher) resolution scales that are not required during processing.
For example, by discarding all the highest resolution blocks, RBp, in each LB, the
decoder can reconstruct a scaled version of the video at only half the encoded spatial

resolution in each dimension.

e Color block (CB): Each RB is further comprised of two CB’s, namely, the lu-
minance block, CBy, and the chrominance blocks, CBy and CBy,, as explained in
subsection 3.4.4. With this organization of the bit stream, the decoder can recon-
struct a grayscale video by discarding all the CBy and CBy bit stream segments in
each RB. It is worth noting that there are no motion vectors for the chrominance
segments since they use a scaled version of the corresponding motion vector fields of

the luminance segments for motion compensation.

For all the exposition in the following chapters, we may often refer to a resolution
block as the basic scaling entity that can either be chosen or discarded accordingly so as
to satisfy a certain combination of video scaling parameters. By ignoring the generation of
certain resolution blocks during the encoding process, or discarding the processing of certain
resolution blocks during the decoding process, both the encoder and decoder can achieve a

certain degree of complexity scaling. With the above organization of the compressed video
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bit stream, it is evident that the proposed multi-scalable video compression architecture
can support different desirable video scaling parameters simultaneously. In fact, the newly
generated scaled-down version of the encoded bit stream can subsequently be further re-
scaled to fulfil some other combinations of reduced video scaling specifications. It is also
worth noting that precise bit rate control can be achieved at both the encoder and decoder,
regardless of the chosen frame rate, spatial resolution, and color scaling. Chapter 5 will
later delve into the algorithmic level of the encoding and decoding processes, which further

illuminate the generation and parsing of the above multi-scalable video bit stream.

3.5 Conclusion

This chapter first presented the need for highly scalable video compression algorithms which
can simultaneously cater to disparate receivers in heterogeneous network environments.
Three plausible video scalability scenarios were discussed: (i) video scaling of the original
input source by the encoder during the generation of the scalable compressed bit stream;
(ii) layered transmission of different segments of the bit stream while delivering the scalable
video over multiple network channels; and (iii) progressive reconstruction of the scalable
video by the decoder.

We then explained eight desirable video scaling parameters, and showed how each
scaling parameter can be useful in different situations. In particular, an insight into each
of the following video scaling parameters were given: bit rate, distortion, spatial resolution,
temporal resolution, alphabet resolution, hardware, complexity, and object scalability. The
proposed multi-scalable video compression architecture explicitly supports the first five
scaling parameters, while both hardware and complexity scalabilities are made possible
indirectly by means of choosing different combinations of the other video scaling parameters.

Several inherent problems that would impede the development of bit rate, spatial reso-
lution, and frame rate scalings were expounded and solutions proposed. More importantly,
we also presented a multi-scalable compression framework that can support simultaneous

video scalability in terms of bit rate, distortion, spatial resolution, frame rate, and color
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from the same compressed bit stream. Finally, we analyzed how the scalable segments of
the video bit stream are organized judiciously in four embedded resolution layers: frame
block, layer block, resolution block, and color block. The distinct arrangement of the vari-
ous scaling entities will then allow the decoder to selectively process or discard a particular

coding block depending on the chosen combination of video scaling parameters.



Chapter 4

Fast Block Motion Estimation and

Compensation

“Health is the greatest gift, contentment the greatest wealth,
faithfulness the best relationship.”

Siddhartha Gautama Buddha (563 - 483 B.C.)

4.1 Introduction

One of the major issues in video sequence coding is the exploitation of temporal redundan-
cies. Each frame in a typical video sequence is made up of some changed regions of the
previous (reference) frame, except at scene cuts where the current frame is unrelated to the
previous frame. Frame motion can generally be classified as either global/camera motion or
local/object motion. Global motion refers to the movement of the entire scene of a frame due
to camera motions such as panning, zooming, rotation, translation, and vibration. Local
motion, on the other hand, is due to movements of objects in a scene. As different objects
may exhibit different types of movement, local motion estimation is usually more difficult
to compensate. Furthermore, the problem of dealing with covered and uncovered areas due
to motion is still an elusive one. Nevertheless, it is observed that local motions are also

usually small and restricted, especially for most low motion content video conferencing and

73
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visual telephony sequences.

The main objective of any motion estimation algorithm is thus to exploit the strong
interframe correlation along the temporal dimension. If we can estimate the set of motion
vectors that map the previous frame to the current frame, then we only need to code
and transmit the motion vectors and possibly the error frame associated with the difference
between the motion-compensated and the current frames. Since the error frame has a much
lower zero-order entropy than the current frame, fewer bits are needed to convey the same
amount of information. Hence compression of the video source can be achieved even after
coding the motion vectors. In view of the advantages of interframe coding as compared
to intraframe coding of video sequences, a wide range of motion estimation and motion
compensation (MEMC) approaches have been investigated. Some of the more popular
methods include block-matching algorithms (BMAs), parametric or motion models, optical
flow, and pel-recursive [27],[117] techniques. In BMA, the motion vector of a block is defined
as a two-dimensional vector, which models the block motion as translational motion in the
horizontal and vertical directions. Such a translational motion model may not sufficiently
describe the complex local motion information, but it is a very good compromise between

computational efficiency and accuracy of the motion estimates.

Higher dimensional motion (parametric) models have been proposed to better estimate
the interframe motion. With a three-parameter motion model [56], Hoetter has shown
that motion consisting of both the change of scale (zooming) and translation (panning)
can be compensated. A four-parameter motion model [120] will be capable of modelling
rotational motion as well. Others such as the six-parameter [69], seven-parameter [98],
eight-parameter [55], and the 12-parameter [93] motion models have also been reported in
the literature. Generally better motion prediction is achieved by increasing the number
of motion parameters in the motion model [93]. For example, the 12-parameter motion
model can estimate second-order geometric transformations, which include warping and
shearing. However, such improvement is achieved at the cost of extra motion overhead
and computational complexity. As a compromise of computational cost, motion overheads,

and accuracy of motion estimation, we [2],[3] found that using a 3-parameter motion model
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similar to [56] can be sufficient for the purpose of interframe motion compensation.

Another approach for interframe motion estimation is the optical flow technique. In
addition to just finding the motion vectors, optical flow methods are usually employed for
the measurement of accurate and dense optic flow (or image velocity) in image sequences.
These dense motion fields can be used for a wide variety of tasks such as the inference
of egomotion and surface structure, and the estimation of 3-D motion. Different variants
of optic flow computation comprising different prefiltering or smoothing techniques, and
different means for measuring the spatio-temporal derivatives can be found (e.g. [22], [52],
[57], [83], [89], [102]). A comprehensive review that performs a quantitative evaluation of
nine regularly cited optical flow techniques was presented by Barron et al. in [24]. Recently,
Bernard [25] proposed to measure optic flow based on the projection of the optic flow

gradient constraint on discrete analytic wavelets.

Among the many approaches for MEMC, BMA seems to be the most popular method
due to its effectiveness and simplicity for both software and hardware implementations.

This is evident as BMA is used extensively in all current international video compression

standards which include MPEG-1 [59], MPEG-2 [60], H.261 [42], and H.263 [62].

4.2 A Review of Block Matching Algorithms

The main idea of any block-based methods is the assumption of congruent motion infor-
mation for the entire block of an image; such an assumption, however, has its limitations,
especially for blocks that straddle two or more objects with distinctly different motion con-
tents. Nevertheless, block-based methods are practically the most efficient approach to use
when the chosen block size is relatively small with respect to the image dimensions, thus
accounting for a good approximation of local object motions.

In BMA the current frame is first partitioned into disjoint or overlapping blocks. Each
block is then matched against the reference frame to find the best motion vector that maps
a block from the reference frame to that block of interest in the current frame. The best

(optimum) motion vector is usually defined as the one that mininises some predetermined
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block distortion measure (BDM) such as the mean square error. The challenge in BMA is
to find the optimum motion vector, or to estimate a suboptimal motion vector, with as few

computations as possible.

For BMA the most accurate strategy is the full-search (FS) method which exhaustively
evaluates all possible candidate motion vectors over a pre-determined neighborhood search
window to find the optimum. The candidate that gives the best match for a given BDM is
chosen as the estimated true' motion vector. Nevertheless the FS method has not been a
popular choice because of its high computational cost. For example, a search window with
a maximum motion of =W pixels in both the horizontal and vertical directions will require
(2W + 1)? candidate search points for each block of interest. As a result, this motivates a
host of other computationally efficient, but suboptimal, search variants such as the three-
step search (TSS) [71], 2-D logarithmic search [64], orthogonal search [96], cross search
[44], conjugate directional search [103] and its simplified version called one-at-a-time search
(OTS) [68], simple and efficient search (SES) [82], block-based gradient descent search
(BBGDS) [81], and dynamic search-window adjustment and interlaced search [73]. They
are suboptimal because they choose to evaluate only a suitable subset of all the candidate
motion vectors in each stage of the block matching procedure. Unlike F'S, the principle that
underlies suboptimal search algorithms is based on the unimodal error surface assumption,
which assumes that the BDM increases monotonically as the search deviates from the po-
sition of true motion vector (or global minumum error). This assumption, however, may
not always hold due to reasons such as the aperture problem and the inconsistent block
segmentation of foreground and background motions. As a result, the suboptimal block
search algorithms are susceptible to being trapped in local optima. These faster variations,
nevertheless, are usually employed in practice, especially in real-time video coding applica-
tions, as experimental results have shown their near-optimal performances even when the

assumption is not exactly true [103], [80].

Among these suboptimal BMAs, TSS [71] is one of the earliest and most widely used

'In the following, we connote “true” as the optimum motion vector that is found using the FS method;

using another search strategy may or may not result in the true motion vector for the same block of interest.
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Figure 4.1: Motion vector distribution for “Football” sequence.

techniques for fast block estimation. It consists of three evaluation steps — each step
contains nine uniformly-spaced search points which get closer after every step. The best
candidate search point in the previous step becomes the center of the current step. Hence
TSS requires a fixed (9 + 8 + 8) = 25 search points per block, which leads to a speedup
ratio of 9 over the F'S when W = 7. The main drawback of TSS is the relatively large search
pattern in the first step which renders it inefficient for finding blocks with small motions.
Moreover, its uniformly-spaced search pattern is not well-matched to most real-world video
sequences in which the motion vector distribution is non-uniformly biased towards the zero
vector. This is depicted in Figure 4.1, in which more than 80% of the blocks are stationary
and quasi-stationary (within a central 3 x 3 pixel area) even in the fast-motion “Football”
sequence. Smaller motion sequences such as “Miss America” and “Salesman” contain an

average of 90% and 99% of the blocks having motion vectors within +3 pixels, respectively.

In order to exploit the characteristics of the center-biased motion vector distribution,
a new three-step search (NTSS) algorithm [78] was introduced. It employs a center-biased
search pattern in the first step by adding a smaller central eight-point pattern to that of

the TSS. As a result, the worst-case scenario of the NTSS will require (25 + 8) = 33 block
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matches. Moreover the NTSS also allows termination of the search after the first or second
step. Using this technique, only 17 search points are needed for stationary blocks, and
either 20 or 22 search points for quasi-stationary blocks (within +2 pixels). According to
the results in [78], the speed of NTSS is within £18% of T'SS, but it gives almost consistently
better motion estimates. It is, nevertheless, noted that the computational requirement of
NTSS can be higher than the TSS for sequences that have a lot of large motion vectors, for

example, due to fast camera panning or accelerating objects in the scene.

Recently a new four-step search (4SS) algorithm [94] was proposed to speed up both
the worst-case and average-case computational requirements of NTSS. It also exploits the
center-biased motion vector distribution characteristic by utilizing a nine-point search pat-
tern on a 5 x 5 grid in the first step instead of a 9 x 9 grid as in the T'SS. As a result
of starting with a smaller search grid pattern, 4SS requires four search steps as compared
to only three steps in both the TSS and NTSS, for the same search window of W = 7.
In spite of this, simulation results in [94] show that the total number of candidate search
points in 4SS actually ranges from the best-case of 17 to the worst-case of 27 points. Ac-
cording to [94], 4SS gives a speedup of 6 block matches for the worst-case, and an average
of 2 block matches less than the NTSS. More importantly, 4SS still manages to maintain
motion estimation performance comparable to the NTSS, which in turn is better than the

TSS.

All the BMAs described above operate at a single spatial resolution; hence, they are
called monogrid block matching algorithms. A number of papers (see e.g. [26], [28], [39],
[74]) have proposed to extend the concept to a multiresolution (multigrid) framework —
pyramidal or hierarchical — with the objectives of speeding up the matching process, ob-
taining more accurate motion vectors, and generating a multiresolution representation of
the motion vector field. In fact, the monogrid FS algorithm has also been implemented
using a hierarchical block matching framework to speed up its processing while achieving
optimal motion vectors (e.g. hierarchical mean calculation search, HMCS, [112]). There are
many other different approaches proposed to further improve the performance of BMAs.

Among these improvements include:
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e reducing the computational complexity of BDM evaluation, such as using the deci-
mated MAD measure [80], the projection-based technique [70], and the matched pixel

counting (or pel difference classification) method [45];

e enhancing the rate-distortion performance of motion estimation, such as employing
rate-distortion-constrained statistical algorithms to produce smoother motion field

[34], [46];

e increasing the reliability and accuracy of motion matching, such as using a two-
stage global and local motion compensation technique [54] for finding more reliable
foreground and background motions. Others include a generic motion search (GMS)
algorithm [30] that first chooses a random selection of initial candidate motion vectors
and then using the similar genetic processes of mutation and evolution to find the

optimum motion vector;

e speeding up the search process, such as employing motion field subsampling (with
the 2:1 block and/or pixel subsampling) [80], applying a thresholding method that
terminates the search process once a certain predefined accuracy is satisfied [101],
and exploiting the multiresolution-spatio-temporal correlations of motion vectors in
neighboring blocks to select a good initial candidate search motion vector [28], [125];

and

e enhancing the subjective quality of block-based matching, such as using overlapped

block matching to greatly suppress the blocking artifacts [62], [92].

In this dissertation, we introduce a novel Unrestricted Center-Biased Diamond Search
(UCBDS) algorithm [4] for both monogrid and multigrid suboptimal block motion estima-
tion, which can be more efficient, effective, and robust than previous suboptimal BMAs.
Section 4.3 will describe in detail the new features in the UCBDS algorithm, and investigate
the theoretical improvement of UCBDS against other suboptimal BMAs. We first focus on
monogrid block matching in the spatial (or image) domain. The extension of UCBDS to a

multigrid framework that operates in the wavelet domain will be investigated in Section 4.4.
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Section 4.5 then presents and discusses extensive experimental simulations to verify the ef-

ficiency and effectiveness of UCBDS, before the conclusion is drawn in Section 4.6.

4.3 Unrestricted Center-Biased Diamond Search Algorithm

The proposed suboptimal BMA called Unrestricted Center-Biased Diamond Search (UCBDS)
[4] is a fast and robust algorithm that exploits the center-biased motion vector distribution
and adopts a halfway-stop search strategy. UCBDS has a best-case scenario of only 13
search points and an average of only 15.5 block matches. This makes UCBDS consistently
faster than other suboptimal block matching techniques, and yet achieve comparable, if
not better, block motion prediction accuracy. The following subsections will explain the
search-point configuration, the search-path strategy, the step-by-step algorithm, and the

theoretical improvement of UCBDS.

4.3.1 Algorithm Development of UCBDS

In any BMA, each frame is first divided into blocks of size N x N pixels; N = 16 is used
in MPEG-1 [59], MPEG-2 [60], H.261 [42] and H.263 [62]2. Furthermore in low and very
low bit-rate video applications, the search for each block match is usually performed over
a 15 x 15 search area3, requiring 225 possible candidate search points per block when the
FS is used. As this can be too computationally expensive, our main objective is concerned
with choosing a suitable subset of these 225 points for a suboptimal version of the search
algorithm. Obviously the choice of the subset of search points will have a significant in-
fluence on the speed, accuracy, and robustness of the BMA. The average number of block
matches, the robustness to noise in finding the optimum motion vector, and the effective-
ness in exploiting the center-biased motion vector distribution for higher statistical gain in
block matching speed, are some key factors in the design of the search-point configuration

and search-step strategy.

Figure 4.2 (a) depicts a basic diamond search-point configuration used in UCBDS. It

2 Although H.263+ has an advanced option to switch to four 8 x 8 blocks.

3However, as will be explained later, UCBDS is flexible enough to operate on any sized search window.
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Figure 4.2: Diamond search pattern: (a) Original diamond search-point configuration, (b)
Next step along diamond’s edge, (c¢) Next step along diamond’s face, (d) Final step with a
shrunk diamond.

consists of nine candidate search points. This pattern is inspired by its compact® structure
that is designed to exploit the center-biased characteristic of motion vector distribution.
Figures 4.2 (b) and (c) show the positions of the diamond, with respect to the previous
position, for the next search step along the diamond’s vertex and face, respectively. Note
that a maximum overlapping region is chosen so that there are only five or three new candi-
date search points, respectively, to be evaluated in every next step. Maximum overlapping
is required to minimize the number of search points at each step. However, UCBDS also
attempts to reach out as far as possible in each step to search for larger motions. Such a
search-step strategy is critical to reducing its susceptibility of being trapped in local optima.

Figure 4.2 (d) illustrates the final search step where the diamond is shrunk to only four

“A more compact structure is either the smaller 5-point diamond or the 9-point square within £1 units.
However, simulations show that a larger sized search pattern is necessary for achieving greater accuracy in
motion estimation. This is especially true for larger-motion blocks whereby the central block motion field

surface can be relatively smooth and mislead to trapping in local optima.
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Figure 4.3: Example of unrestricted search path strategy using UCBDS.

new candidates for internal-point checking.

As a good compromise between the computational cost and the accuracy of using a
particular BDM as the objective function for each block’s evaluation, we have chosen to

use the sum of absolute difference (SAD) given by

N-1N-1

SAD () (e, my) = Y N filp+i,q+5) = frenep+i+ma, g+ +my)l,  (4.1)
i=0 j=0

where —W < mg, m, < +W. Here each N x N block with its upper left corner at a position
(p,q) in the current frame f; is matched with a block of the same size in the reference
(reconstructed) frame f;_;, displaced by a motion vector (m,,m,). Other BDM’s such as
sum of square error (SSE) and maximum pixel count (MPC) can also be used. Simulation
results later will show that the choice of the simpler SAD measure also gives comparably

accurate motion estimates as those obtained by using the SSE measure.

Figure 4.3 illustrates an example of the unrestricted search path strategy using UCBDS.

It is unrestricted in the sense that the algorithm imposes no restriction on the number of
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search steps and the search window can be arbitrarily large, if needed. Assume that the
true motion vector of the block is (m,,m,) = (+7, -2). We begin at (0,0) with an original
diamond pattern marked as 1. The minumum BDM of the nine candidate search points is
found. If this occurs at (0, 0), the four search points at a, b, ¢ and d are evaluated. Suppose
that the lowest BDM is found at point (+2, 0); this motion vector now becomes the center
of the new diamond (marked as 2) in the next search step. Five new candidate search points
are compared for this vertex search. In this example, we require six search steps, where the
shaded candidate points have the lowest BDM so far along the search path. Notice that
the best point in step 5 coincides with that of step 4. This signals us to shrink the diamond
pattern and perform the last search step via internal-point checking. Altogether we have

performed 28 block matches in this example.

The following is the pseudo-code of unrestricted search path strategy using the UCBDS

algorithm:

e Starting : The original diamond pattern (Figure 4.2 (a)) is placed at (0, 0), the
center of the search window. The BDM is evaluated for each of the nine candidate
search points. If the minimum BDM point is found to be at the center (c, ¢) of the

diamond, proceed to Ending; otherwise proceed to Searching.

e Searching : If the minimum BDM point in the previous search step is located at one
of the four vertices (i.e., either (c-2, ¢), (¢c+2, c), (¢, ¢-2), or (¢, c+2)), then proceed to
Vertex Search. Else, if it is located at one of the four possible faces of the previous
diamond (i.e., either (c-1, c+1), (c-1, c-1), (c+1, ¢-1), or (c+1, c+1)), then proceed

to Face Search.

— Vertex Search : The diamond pattern of Figure 4.2 (b) is used with the center

of the new diamond coinciding with the lowest BDM point (i.e., updating the

center (c, ¢)). Five new candidate search points are evaluated.

— Face Search : The diamond pattern of Figure 4.2 (c¢) is used with the center
of the new diamond coinciding with the lowest BDM point (i.e., updating the

center (c, ¢)). Three new candidate search points are evaluated.
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Figure 4.4: Minimum possible number of search points using UCBDS, for each motion
vector location.

Note that any candidate point that extends beyond the search window is ignored.
The minimum BDM is again identified. If the minimum BDM is found at (c, c), then

proceed to Ending; otherwise proceed to Searching to continue the next search step.

e Ending : The shrunk diamond pattern of Figure 4.2 (d) is used with the same center
(c, ¢). Now the final four internal points of the previous diamond are evaluated.
Similarly, any internal candidate point that extends beyond the search window is also
ignored. The candidate point that gives the lowest BDM is chosen as the estimated
motion vector, (7ng,7M,y). The current block’s search process is completed. Proceed

to Starting for the next block, if any.

4.3.2 Theoretical Analysis of Fast UCBDS

This subsection aims to give insight into why UCBDS is truly center-biased and how speed

improvement can be obtained over other suboptimum BMAs. In order to derive some lower
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bounds on potential speedup, we compare UCBDS against the fast 4SS; comparisons with
the TSS, NTSS, and FS are similar. Our main argument in this analysis is based heavily
on the observed center-biased motion vector distributions. To begin, we first compute the
minimum® number of search points, N, within a region of 3 pixels about the stationary
motion vector (0, 0). Figures 4.4 and 4.5 illustrate the minimum N, for UCBDS and 4SS,
respectively. When compared with 4SS for the search space where N < 22, it is clear that
UCBDS covers a slightly larger area and has lower values of Ny for the corresponding search
points. It is, however, noted that 4SS can become more efficient beyond the +3 region.
To get a better insight of the gain in N, we subtract the corresponding search points of

UCBDS from 4SS over this +3 region; this gives a saving of up to 4 block matches per

block.

We can further quantify this gain in V5 for block estimation by defining the following

probabilities of occurrence:

Py — probability of stationary blocks (i.e., the motion vector is (0, 0));

P, — probability of quasi-stationary blocks within 1, but ezcluding (0, 0);

P, — probability of quasi-stationary blocks within +2, but ezcluding the 1 region at

the center;

P3 — probability of quasi-stationary blocks within +3, but exzcluding the £2 region at

the center; and

P' — probability of blocks in the region where 4 < |mg|,|my| < W.

Taking the average of the differences in Ny between 4SS and UCBDS over each of the above

stationary and quasi-stationary regions, the statistical average gain of UCBDS over 4SS can

5This is the shortest path with the minumum possible number of search points needed to conclude that
a candidate point (mg,my) is the estimated true motion vector. In practice, the same motion vector may
need more than this minimum value. Actually it depends heavily on the gradient of the block motion field
surface. For example, the motion vector at (0, +1) will need 13 block matches if (0, 0) was chosen, but it
will need 18 block matches if (0, +2) was chosen instead in the first search step. The same problem also

plagues all other block-based search algorithms.
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Figure 4.5: Minimum possible number of search points using 4SS, for each motion vector
location.

be represented as

20 52 48
Gain in Ny = 4P, + (§)P1 + (E)Pg + (ﬁ)Pg +nP, (4.2)

where P = 1 — (Py + Py + P> + P;), and n is some negative number. Suppose further
that we assume a uniform probability distribution over the £3 pixel region at the center,
and that no motion vectors lie outside of this region. Then from (4.2), we will have an

uniformly-distributed average gain of

Uniform gain in Ny = 0.25 x (44 2.5+ 3.25 +2)

= 2.94 search points per block. (4.3)

However, observations from most real-world sequences show very peaked probabilities around
Py and P, as depicted in Figure 4.1. This means that an average gain of more than 2.94
search points per block can be expected. More simulation results later will justify this

statement. At the other extreme, if all blocks are stationary or have motion vectors of
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either (0, -1), (0, +1), (+1, 0) or (-1, 0), then we can have the maximum possible gain of 4
search points, or a 31% speed improvement, per block over the fast 4SS. Similarly, we can

also compute the theoretical speedup factors of UCBDS over the T'SS, NTSS, and FS.

4.4 Fast Block Matching in Wavelet Domain

This section investigates the application of block-based motion estimation and motion com-
pensation in the wavelet domain, instead of in the spatial (or image) domain. As wavelet
decomposition provides a multiresolution structure, we can extend the monogrid UCBDS
algorithm to a multigrid block matching framework. Such a wavelet-based multiresolution
motion estimation and motion compensation framework constitutes an integral part of a
fully scalable video coding architecture. In addition to a multiresolution representation
of the motion vector field, the fact that the block matching is operating in the wavelet
domain provides seamless integration with the scalable compression algorithms that will
be described in Section 5.3. A key issue of block matching in the wavelet domain is the
problem of shift variance of critically-sampled discrete wavelet transform, and this will be
illuminated next. We then propose a simple wavelet-based multiresolution block matching

scheme using the fast UCBDS algorithm. Some simulation results will also be presented.

4.4.1 Non-Translational Invariance of Wavelet Transform

The conventional discrete wavelet transform, as introduced by Mallat [84], employs a
critically-sampled (non-redundant) octave-bandwidth structure, where the dimension of
the wavelet-decomposed signal is the same as that of the input signal. For a two-channel
(lowpass and highpass) wavelet filterbank system, both the lowpass and highpass filtered
signals are decimated by a factor of two at each decomposition level. Such a non-redundant
decomposition framework is attractive in many applications such as data compression,
mainly because it preserves a compact representation of the input signal. Unfortunately,
critical sampling engenders a translation variance problem, where a linear shift in the orig-

inal (time or spatial domain) signal does not necessarily result in a corresponding linear
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shift in the wavelet domain. This is because the translation operator does not commute

with the decimation operator.

Consider the following simple illustration: Let a one-dimensional length-N signal,
fln],n = 0,1,... ;N — 1, be translated by some fixed k positive units to generate a new
shifted signal, f;—x[n], where f;_x[n] = fln — k] for n = 0,1,... ;N — 1, and with some
boundary extension being applied at the borders of f[n]. To simplify the exposition, we
choose the two-tap Haar wavelet for filtering. It is noted, however, that the following il-
lustration can be easily extended to higher-dimensional signals and other longer wavelet
filters. Further denote s‘[n],d‘[n] as the ¢!*-level lowpass and highpass wavelet coeffi-
cients (in a two-band octave decomposition structure) of the original unshifted signal, and

0

st_,[n], di_,[n] as the corresponding ¢*"-level wavelet coefficients of the signal translated by

one positive unit. Hence, we have:

S0 = Ss(/ln)+ fl2n = 1),
) = —(fl2n] - fl2n - 1))
siziln] = %(ft:ﬂ%] + fi=1[2n — 1]),
1
= ﬁ(f[% — 1]+ f2n - 2)),
di_y[n] = %(ftl[%] — fi=12n — 1)),
1
= E(f[% — 1] = f2n - 2)), (4.4)
for all n = 0,1,... ,L%J, where either the symmetric or periodic boundary extension

method can be applied at the borders of f[n]. Clearly, the lowpass and highpass filtered

signals have been subsampled by a factor of two in the above Haar decomposition process.

In order to demonstrate the issue of shift variance of critically-sampled wavelet decom-

position, consider the following two cases:

Case 1: Smooth input signal

Consider a smooth signal where f[n| = f[n — 1] = m,n € Z for a certain fixed value m. At
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the extreme, we may imagine a constant input signal where f[n] = m,n € Z. This gives

Case 2: High-frequency input signal

Counsider a high-frequency signal with many abrupt transitions such as edges and sharp
patterns, where |f[n] — f[n — 1]| is very large at the positions of transition. At the extreme,
we may imagine an oscillating signal with sharp transitions with a period of two units such

that f[2n] =0 and f[2n 4+ 1] = m > 0,n € Z. This produces

s'fn] = si_y[n] = %
d'[n] = Vi and d}_,[n] = +E’ n € 2.

Clearly, a shift of one positive unit around an edge in the time domain does not result in a
corresponding shift in the wavelet domain, especially for the highpass wavelet coefficients.
For such sharp edges or oscillating signals, the signs of the corresponding wavelet coefficients
can become the opposite. Hence, the conventional block matching algorithm may not work
accurately in high-frequency subbands so as to capture such motion shifts around sharp

edges in a scene.

The same phenomenon also holds true for ramp-like boundaries (or a step edge) of the
scene, where f[k] = e = 0, for all k < 2K; and f[k] =m > ¢, for k > 2K, where k € Z and

K is some fixed positive integer. In this case, we have

) and S%ZI[K] = 07

, and dj_,[K]~0.

It is noted that a unit translation around a ramp-like edge can result in unmatched mag-
nitudes of the corresponding lowpass and highpass coefficients.

As pointed out earlier, the root cause of this is attributed to the shift variant property
of the downsampling (or upsampling) operation. However, there are exceptions to the above

phenomenon whereby certain linear translations in the spatial (or time) domain will have
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the corresponding linear shifts in the wavelet domain. Let us further analyze (4.4) for a

signal that is shifted by an even number of pixels. We now have

stoaln] = Z=(fecanl2n] + fial2n ~ 1),
1
= ﬁ(f[Zn—Zk]—{—f[Zn—Zk—l]),
= Sl[n - k]?
di_oin] = (fi=2k[2n] — fi=ox[2n — 1]),

for some fixed integer k. This shows that accurate block motion estimation can, in fact, be
performed in the wavelet domain if the actual spatial shift is some even number of pixels.

By extending the result to a higher wavelet decomposition level, we obtain
szzu["] = Sé[" — k], and df:m["] = dé[" — kl,

where £ = 1,2, ..., and for some fixed integer k. It is, therefore, possible to have accurate
motion estimates for higher resolution wavelet subbands as well. However, we may not
obtain such accuracies for other spatial shifts of the original signal. In such a case, we may
still be able to approximate the true motion vector, and then encode the prediction residue
between the displaced (predicted) subband block and the corresponding subband block of
wavelet coefficients in the current frame of interest. In other words, we make the best
reasonable effort to search for the block of wavelet coefficients that will minimize a certain
block distortion metric. Some simulations described later will illustrate the performance of

the proposed block motion compensation in the wavelet domain.

4.4.2 Wavelet-Based Multiresolution UCBDS Algorithm

One of the main motivations for wavelet-based motion compensation is that wavelet de-
composition offers a natural multiscale representation of the video frames; this presents
an attractive framework for multiresolution representation of the motion vectors. A quick

literature review will show several earlier works on motion estimation and compensation
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in the wavelet domain, for example, [29, 67, 87, 88, 91, 123, 124]. Each of these works
proposed a method to address certain issues, ranging from securing the motion prediction

loop to improving the motion estimates in the highpass subbands.

For example, Cheng et al. [29] proposed to prevent a loss of motion prediction loop for
each wavelet scale and ensure that the prediction generated at a certain scale at the decoder
is exactly the same as the prediction generated by the full scale decoder. They employed
a top-down multiresolution motion estimation approach that first motion compensates the
low-low frequency subband of the previous reference frame, performs a single-scale forward
wavelet transform on this motion-compensated subband, and then uses the resulting high-
pass subbands of this decomposition as predictions of the corresponding highpass subbands
of the current frame of interest. The prediction residue is coded along with a multireso-
lution representation of the motion field. In the work reported by Meyer et al. [87, 88],
motion compensation for a particular resolution was carried out on the lowpass subband
at the next finer resolution (instead of predicting the highpass coefficients directly at the
current resolution). They also proposed a different decomposition structure where, at each
resolution scale, the decimated lowpass subband is filtered twice and the three highpass
subbands are undecimated. During motion compensation, the twice lowpass filtered sub-
band is reconstructed into an undecimated lowpass subband. Together with the other three
undecimated highpass subbands, they reconstruct four shifted subbands from the undeci-
mated coefficients and then take an average of these subbands to obtain the final predicted

subband.

It is observed that both of the above methods require high computations and working
memory during the multiscale motion compensation process. In this dissertation, we will
employ a new and fast multiresolution motion estimation and compensation approach in
the multiwavelet domain by further exploiting the efficiency and flexibility of the UCBDS
block matching algorithm. Also, the proposed wavelet-based motion compensation will
enable the generation of a truly multi-scalable video compression platform, which will be
considered further in Chapter 5. In essence, the proposed wavelet-based multiresolution

UCBDS framework benefits from the following useful features:
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e Low computational complexity — all motion estimation and compensation is
carried out in the wavelet domain without the need to perform multiple forward and

inverse multiwavelet transforms while computing the motion fields.

e Low memory requirement — unlike 3-D wavelet transform methods which require
the storage of many transformed video frames, the proposed framework only keeps a

few reference frames so as to support temporal scalability.

e Low motion vector overhead — the top-down hierarchical motion compensation
exploits the motion vector relationships among different resolution scales. Since only
the differential motion vectors are coded and transmitted, fewer bits are needed to
represent the motion information. Also, since a significant number of motion vectors
in the high frequency subbands can be zero (due to sparse wavelet coefficients in these
subbands), no motion vectors are generated for these blocks since they are encoded

using an intra-coding mode.

e No frame coding latency — the current frame of interest is motion compensated
and encoded (or decoded) as soon as it is available, without the need to wait for a
future reference video frame (such as using the bi-directional motion compensation
mode in MPEG standards) nor delay processing until a 3-D group of frames becomes
available. Such a zero frame delay is critical for real-time interactive video applica-

tions.

e Non-redundant coding in wavelet domain — the motion compensation pro-
cess operates in a compact representation of multiwavelet decomposition subband
structure. Unlike conventional multiresolution motion compensation using an over-

complete pyramid tree, there are no extra wavelet coefficients to be coded here.

e No blocking artifacts — since block matching is performed in the wavelet do-
main across the multiple subband scales, the reconstructed video frame is virtually
free from annoying blocking artifacts because the block boundaries would have been

smoothened out by the (interpolative) filtering process during inverse multiwavelet
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transform. This eliminates the need for sophisticated overlapped block matching

techniques or CPU-intensive post-processing/deblocking operations.

e Fast motion search — the center-biased UCBDS algorithm is fully exploited here
for finding small local motion vectors. This is because most motion vectors will now
have only small magnitudes as a direct result of the application of block matching
with a lower resolution grid of the wavelet subbands and the use of motion vectors
found in a lower resolution subband as motion vector seeds that initiate the new

motion search in the current subband.

e Support multi-scalability — the motion vectors are generated and transmitted in
a multiresolution manner. Hence, a decoder with a spatially scaled-down version of
the video will only need to receive and decode the motion vectors that correspond to
the displayed resolution. Also, the proposed method integrates seamlessly with the
multi-scalable video compression framework to also support simultaneous bit rate,

frame rate, and color video scalabilities.

The following outlines the steps involved in the proposed wavelet-based multiresolution
UCBDS algorithm. The block diagrams in Figure 5.10 and Figure 5.11 will further illustrate
the data flow and processing units in the above algorithm. More explanation will also be

given in subsections 5.3.3 and 5.4.2.

1. For a current input video frame that is to be encoded using an inter-frame coding
mode, determine the corresponding reference frame for motion compensation as de-

scribed by the temporal hierarchy structure in subsection 3.4.3.

2. With both the current and reference frames in the multiwavelet transform domain,
motion compensation is performed for each subband of the luminance channel in a
top-down manner, starting from the coarsest resolution scale to the finest scale, and

then followed by the subbands of the two chrominance channels.

3. For each subband in the current frame, the reference subband used for motion compen-

sation is the corresponding subband in the reference frame with the same orientation,
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resolution scale, and channel.

4. Since UCBDS is a block-based algorithm, the subband is first subdivided into an
array of blocks with a certain fixed block size (say, 8 x 8). In order to maintain the
same number of blocks in each resolution subband, the block size is doubled in each

subsequent finer resolution scale.

5. For each block in a subband, a monogrid UCBDS is performed within a certain search
window to find the optimum motion vector. FEither full-pixel or half-pixel motion
vector accuracy can be used. The motion vector is then encoded using an adaptive

model arithmetic coder®.

6. For a block in a subband which has a parent (as determined by the parent-child
relationship defined in Section 5.2), the motion vector of the corresponding parent
block which has been found earlier is used to initialize the motion search for the
current block. The differential motion vector (with respect to that of the parent

block) is then entropy encoded.

7. In recognition of the fact that a significant number of multiwavelet coefficients in the
higher frequency subbands can be zero (due to coarse quantization while encoding the
reference subbands) and the shift variance problem of motion compensating the high
frequency coeflicients, we employ the following two mechanisms while performing the

motion search:

e Intra/Inter block motion switching — each block in the higher frequency scale is
first analyzed to determine if its coefficients are sparse. If so, intra-coding mode
is used for the block (i.e., no motion compensation is performed); else, the above

inter-coding mode is applied to find the optimum motion vector.

e Zero motion vector bias — for each inter-coded block, the miminum error dis-
tortion value found using the optimum motion vector is compared with the error

distortion value using the zero motion vector. If the former value is smaller than

5 A Huffman entropy coder with optimized probability tables can also be used.
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the latter by less than a certain predefined value, the zero motion vector is still

preferred.

8. The motion information of all the blocks within a particular resolution scale will
be encoded and packetized together with the (prediction error) portion of the bit
stream corresponding to that resolution block. With a top-down approach, the motion
information of the finer resolution subbands can later be discarded in order to support
spatial scalability, without incurring any loss in the prediction loop (as explained out
in subsection 3.4.2.) The block diagrams in Figures 5.10 and 5.14 will further illustrate

how motion estimation and compensation is performed at each resolution scale.

4.5 Experimental Results and Discussions

The theoretical analysis in subsection 4.3.2 has made use of the minimum number of search
points per block, which may not always be the case in practice. While searching for the
optimum motion vector, the search path can be misled to one that is not the shortest path,
and the final estimated motion vector may or may not be the true motion vector. This
subsection, therefore, reports and analyzes the actual experimental performance of UCBDS.
The first part of the experiment will focus on the application of monogrid UCBDS in the
image domain, with the main objective of verifying the efficiency and robustness of the
proposed algorithm. The second part will then discuss some results of the wavelet-based

multiresolution UCBDS algorithm.

4.5.1 Performance Analysis of Monogrid UCBDS

In the first part of the experiment, we use the SAD block distortion measure, block size N
= 16, and search window size W = 7. For vigorous testing, a total of six standard sequences
were used, namely, “Football”, “Flower Garden”, “Table Tennis”, “Miss America”, “Sales-
man”, and “Trevor White”. These sequences were selected for a diverse range of camera
and object motions. For example, the latter three video conferencing sequences have a sta-

tionary background and limited foreground motion. On the other hand, “Flower Garden”
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consists mainly of stationary objects but with a fast camera panning motion; “Football”

contains large local object motion; and “Table Tennis” involves camera zoom-in motion.

We compared the UCBDS against four other BMAs — FS, T'SS, NTSS, and 4SS — using

the following four test criteria:

1. Average SSE per pixel — this shows the magnitude of distortion per pixel; using

SAD for the BDM gives similar plots;

2. Probability of finding true motion vector per block — this gives the likelihood
of the estimated motion vectors to be the same as those found using the F'S method;
this indirectly provides an indication on the susceptibility of each suboptimal search

method to being trapped in local optima;

3. Average distance from true motion vector per block — this measures the

Euclidean distance between the estimated and the true motion vectors; and

4. Average number of search points per block — this provides an equivalent

measure of the actual CPU runtime, as justified below.

Using SAD in (4.1) as the BDM, we need X = N2Abs+ (N2 — 1) Add operations per search
point for a block of size N x N pixels. If each frame is partitioned into B such blocks,
then the total number of operations per frame is given by 2521 N, §b)X , Where Ns(b) is the
total number of search points of the b block. Since we employed the same SAD measure
and the same number of blocks, B, for each of the block matching schemes, the average
number of search points per block, therefore, provides an equivalent measure of the actual
CPU search time. Furthermore, measurements of CPU runtimes are highly dependent on
system loads, and algorithm implementation.

Table 4.1 summarizes the experimental performance of each search technique over
the 4 test criteria, for both the SSE and SAD block distortion measures, using the six
video sequences. The first column tabulates the search speed criterion’, in which the

minimum, maximum, average, and speedup factor (S.F.) with respect to F'S are reported. It

"For conciseness, only the results obtained using the SAD measure are shown as similar positively corre-

lated results were obtained using the SSE measure; SAD is preferred because of its computational simplicity.
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Search points Avg. BDM | Avg. dist. (x10°) | Avg. prob.
Min. | Max. | Avg. | S.F. | SSE | SAD SSE SAD SSE | SAD

FS 225 225 225 | 1.00 | 3208 617 - - - -
TSS 25 25 25.0 | 9.00 | 3443 642 1.95 2.05 0.648 | 0.627
NTSS 17 33 20.9 | 10.8 | 3236 621 1.32 1.33 0.770 | 0.765
4S8 17 27 19.2 | 11.7 | 3450 645 2.00 2.06 0.629 | 0.612
UCBDS 13 37 16.8 | 13.4 | 3390 640 1.92 1.98 0.656 | 0.637
Search points Avg. BDM | Avg. dist.(x10"2) | Avg. prob.
Min. | Max. | Avg. | S.F. | SSE | SAD SSE SAD SSE | SAD

FS 225 225 225 | 1.00 | 2753 473 - - - -
TSS 25 25 25.0 | 9.00 | 2790 474 4.72 4.02 0.985 | 0.981
NTSS 17 33 17.5 | 12.8 | 2775 474 2.98 1.68 0.990 | 0.994
4S8 17 27 17.2 | 13.1 | 2777 | 474 3.84 3.21 0.983 | 0.987
UCBDS 13 33 13.3 | 16.9 | 2770 474 3.11 2.81 0.989 | 0.990
Search points Avg. BDM | Avg. dist.(x10"%) | Avg. prob.
Min. | Max. | Avg. | S.F. | SSE | SAD SSE SAD SSE | SAD

FS 225 225 225 | 1.00 | 6089 788 - - - -
TSS 25 25 25.0 | 9.00 | 6535 802 12.8 11.5 0.958 | 0.961
NTSS 17 33 18.2 | 12.3 | 6178 791 5.91 6.41 0.981 | 0.979
4S8 17 27 17.5 | 129 | 6389 800 9.95 10.1 0.962 | 0.964
UCBDS 13 36 13.8 | 16.3 | 6212 792 6.91 7.21 0.978 | 0.978

Table 4.1: Top to bottom: Performance comparisons (per 16 x 16 block) of FS, TSS, NTSS,
4SS, and UCBDS using “Miss America”, “Salesman”, and “Trevor White” sequences.
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Search points Avg. BDM | Avg. dist.(x107!) | Avg. prob.
Min. | Max. | Avg. | S.F. | SSE | SAD | SSE SAD SSE | SAD

FS 225 225 225 1.00 | 32553 | 1585 - - - -
TSS 25 25 25.0 | 9.00 | 40821 | 1790 6.14 4.96 0.804 | 0.823
NTSS 17 33 22.6 | 9.96 | 34205 | 1620 1.83 1.62 0.925 | 0.931
4SS 17 27 20.1 | 11.2 | 38708 | 1748 4.17 3.49 0.840 | 0.852
UCBDS | 13 33 17.8 | 12.6 | 33781 | 1619 1.69 1.47 0.947 | 0.950
Search points Avg. BDM | Avg. dist.(x107!) | Avg. prob.
Min. | Max. | Avg. | S.F. | SSE | SAD | SSE SAD SSE | SAD

FS 225 225 225 | 1.00 | 70035 | 2395 - - - -
TSS 25 25 25.0 | 9.00 | 74115 | 2442 6.75 5.47 0.864 | 0.890
NTSS 17 33 23.2 | 9.69 | 73393 | 2440 6.18 5.48 0.871 | 0.886
4SS 17 27 20.1 | 11.2 | 74195 | 2459 7.30 6.99 0.867 | 0.877
UCBDS 13 40 18.3 | 12.3 | 74475 | 2461 7.53 7.05 0.888 | 0.896
Search points Avg. BDM | Avg. dist.(x107!) | Avg. prob.
Min. | Max. | Avg. | S.F. | SSE | SAD SSE SAD SSE | SAD

FS 225 225 225 | 1.00 | 25975 | 1586 - - - -
TSS 25 25 25.0 | 9.00 | 30899 | 1695 10.5 9.07 0.790 | 0.814
NTSS 17 33 19.6 | 11.5 | 27049 | 1609 3.51 2.83 0.908 | 0.922
458 17 27 18.7 | 12.0 | 29012 | 1652 6.51 5.38 0.856 | 0.880
UCBDS 13 37 15.2 | 14.9 | 27437 | 1613 3.54 2.90 0.928 | 0.940

Table 4.1: (con’t) Top to bottom: Performance comparisons (per 16 x 16 block) of F'S,
TSS, NTSS, 4SS, and UCBDS using “Flower Garden”, “Football”, and “Table Tennis”

sequences.
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TSS | NTSS | 4SS | FS

Percentage Increase in SAD Distortion | 0.78 | 0.85 | 0.08 | 2.68

Percentage Improvement in Search Speed | 36.7 | 26.8 | 9.84 | 1130

Table 4.2: Performance of UCBDS versus other BMAs for the “Football” sequence.

is worthwhile to note that UCBDS has both the minimum and maximum numbers of search
points per block due to its center-biased and unrestricted search strategies, respectively.
However, the average N per block with UCBDS < 4SS < NTSS < TSS < FS; such
observations were true for all the six test sequences we used. This shows that UCBDS is
generally more efficient (i.e. it has a faster search) than the other schemes, regardless of
the presence of panning, zooming, small or large motions in the sequence.

An interesting question now is how much does UCBDS trade-off block distortion for
higher search speed. From column two of Table 4.1, it can be observed that UCBDS actually
performs very competitively in terms of low block distortion even though it has the lowest
average number of search points. Table 4.2 provides an insight to the question by giving the
percentage® differences between UCBDS and other BMAs, using the “Football” sequence as
an example. It can be seen that UCBDS has marginally worse BDM performance but the
speed improvements are quite substantial when compared to the other search techniques.
In addition, UCBDS may also achieve both lower BDM and higher search speed such as
in the “Flower Garden” sequence. A possible explanation for the good performance of
UCBDS is that it has a very compact search configuration that speeds up the search of
most blocks, while the unrestricted search strategy minimizes the risk of being trapped
in local minima. From the third and fourth columns of Table 4.1, we can also conclude
that UCBDS generally gives a lower average Euclidean distance error from the true motion
vectors, and a higher average probability of finding the true motion vectors, when compared

with the other suboptimal search techniques.

Figures 4.6, 4.7, and 4.8 plot the actual performance of each search scheme on a frame-

8 A 100% improvement means it has twice better performance.



CHAPTER 4. FAST BLOCK MOTION ESTIMATION AND COMPENSATION

2]
o

Average sum of square error per pixel
T T

Average SSE per pixel
w W B » o (4]
[=] al o a1 o al
T T T T T T

N
a
T

20+

ucBDS

4SS

15
[¢]

Distance per block
o
N

40 50

10 20 30 60 70 80
Frame Number
Average distance from true motion vector per block
_— uUCBDS
L B 4ss 4
i NTSS
. ) - TSS

Probability per block

Search points per block

Probability of finding true motion vector per block

100

°
©
=)

©
©
s

°
©
N

o
©

\ 1
1
LY NTS

R TSS
W
.

ucBDS

S

0.86
0

40 50 60 70
Frame Number

10 20 30

Average number of search points per block

80

N
N
T

N
o
T

[
[
T

i
[
T

|

40

50

Frame Number

N
o

10

20

30

40

50

60

70

Frame Number

80

Figure 4.6: Performance comparisons of FS, TSS, NTSS, 4SS, and UCBDS over all 4 test

criteria using “Trevor White” sequence.

by-frame basis. It is clear that UCBDS performs very well in terms of block distortion, while

it consistently outperforms the other methods in terms of search speed. Finally, we present

some subjective results on the effectiveness of motion compensation using various BMAs.

Figures 4.9 (a) and (b) show two consecutive frames of the “Flower Garden” sequence.

Figure 4.9 (c) depicts the difference frame (shifted by +128, but without scaling) between

the two frames without any motion compensation, and Figures 4.9 (d) - (h) illustrate the

corresponding motion-compensated difference frames using the TSS, N'TSS, 4SS, UCBDS,

and FS methods, respectively. It can be seen that UCBDS gives very good motion estimates

(with an average SSE per pixel of 142.4) when compared to the FS (SSE per pixel is 146.4),

but UCBDS is about 13 times faster than the FS method.
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Figure 4.7: Performance comparisons of FS, TSS, NTSS, 4SS, and UCBDS over all 4 test
criteria using “Flower Garden” sequence.

4.5.2 Performance Analysis of Multiresolution Wavelet-based UCBDS

For the second part of the experiment, we investigate the performance of the proposed mul-

tiresolution UCBDS in the wavelet domain. The simulations in this part of the experiment

mainly focus on presenting a visual perspective of the results of performing motion compen-

sation on the wavelet subbands. As pointed out in subsection 4.4.2, all MEMC is carried

out in the wavelet domain; hence, it has low computational complexity and the predicted

frames are free from blocking artifacts. Also, a top-down multiscale representation of the

motion vector fields enables support for spatial resolution scalability. In the simulations,

the following two video sequences were used:

e Miss America: This is a typical video conferencing sequence with a talking head-

and-shoulder person and static background. There is only small local motion and no

100
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Figure 4.8: Performance comparisons of FS, TSS, NTSS, 4SS, and UCBDS over all 4 test
criteria using “Table Tennis” sequence.

global motion.

e Foreman: This is an outdoor video sequence with a foreground object (the foreman)
and a background with details (the building). The sequence also contains a video

shot with camera panning that constitutes fast background motion.

Figure 4.10 portrays four different predicted frames in the Miss America sequence after
the application of motion compensation. Since MEMC is performed in the wavelet domain,
all the predicted frames, reference frames, and prediction error frames are represented in
the wavelet domain, without the need to perform inverse wavelet transform. However, the
predicted frames shown here are reconstructed back to the spatial domain merely to illus-
trate the visual quality of the decoded video when no further prediction error information

is added back to the predicted frames. It is noted that during an inter-frame coding mode,

40
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Figure 4.9: Comparison of various block matching techniques using the Flower Garden
sequence. Top to bottom and left to right: (a) original frame 10, (b) original frame 11, (c)
uncompensated frame difference (average SSE per pixel: 1115.6), and motion compensated
frame differences using (d) T'SS (SSE: 174.9), (e) NTSS (SSE: 157.3), (f) 4SS (SSE: 166.7),
(g) UCBDS (SSE: 146.4), and (h) using FS (SSE: 142.4).
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a pre-determined portion of the prediction error frame will be added back to the predicted
frame to generate the reference frame for encoding (or decoding) a future frame. Also, an
even more significant portion of the prediction error frame is usually added back to the
predicted frame when generating the final decoded frame for display. After all, it is worth
noting that there is generally no requirement that the motion predicted or reference frames
to be legible images, as long as sufficient prediction error information is added back to
reconstruct good decoded frames for display. It can be seen that frames (a) and (c) have
poorer prediction accuracy as compared to frames (b) and (d). This observation is, in fact,
a direct manifestation of the temporal hierarchy structure, as presented in subsection 3.4.3.
Employing a four-layer temporal hierarchy, the distance between both frames (a) and (c)
and their corresponding reference frames is larger (8 frames apart) than that that was used
for frames (b) and (d), which is only two frames apart. As the distance (and motion) gets
larger, we can generally expect the motion prediction to become less accurate.

Figure 4.11 depicts four reference frames from the Foreman video sequence. In this
case, however, frame pair (a) and (b) are actually the same frame instance, as well as
for the frame pair (c¢) and (d). The difference between the frames within each pair is a
direct consequence of enforcing a different base reference value during the reference frame
“locking” mechanism for MEMC, as explicated in subsection 3.4.1. Both frames (a) and
(c) employed a “lock” with only 10% of the target bit rate, while frames (b) and (d) have
twice (i.e. 20%) the amount for the base reference bytes. In other words, the reference
frames in the latter case will have higher fidelity since twice as much information from the
prediction error frames are added back to the previous predicted frames. As a result, the
predicted frames (b) and (d) have better quality since their corresponding reference frames
(from which motion compensation is applied) are of higher fidelity, albeit the fact that the
distances between the current and reference frames are the same in both cases. The first
frame pair has been carefully chosen to highlight the effect of wavelet-based MEMC in the
event of very high local and global motions. It is clear that there are no blocking artifacts

despite the poor motion prediction accuracy, but they do exhibit severe ringing effects’.

®The target encoding byte budget was set to only 100 kbps with the aim to highlight the possible adverse
effect of poor motion prediction accuracy in high motion frame segments as well as the trade-off in the choice
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(c) (d)

Figure 4.10: Predicted frames from Miss America sequence: Frames (a) and (b) have poorer
motion compensation due to a larger distance from the corresponding reference frames; and
frames (c) and (d) have better motion prediction accuracy.
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As explained earlier, employing a higher base reference byte will increase the minimum

decodable bit rate of a given compressed bit stream.

Subsection 4.4.2 explained the various trade-offs between MEMC in the spatial domain
and wavelet domain, and highlighted the advantages of the proposed wavelet-based mul-
tiresolution MEMC in comparison with other wavelet-based methods. Figure 4.12 further
provides some visual insights between block-based MEMC in the spatial domain (using
H.263 compression [62]) and the proposed wavelet-based MEMC. Frame (a) shows an orig-
inal video frame of the Foreman sequence. It is evident from frame (b) that H.263 may
suffer from severe blocking artifact in areas of high local motions. In fact, the poor spatial
block mismatches are most pronounced around the nose, mouth, and helmet regions in
the motion predicted frame. Frame (c) displays the corresponding motion predicted frame
using wavelet-based MEMC. Clearly there is no blocking artifact although some ringing
artifact is visible. Nevertheless, motion mismatches are also manifested around the mouth
and helmet areas. In these blocks where no good block matching is possible, the proposed
wavelet-based UCBDS algorithm may have switched from an inter-block to intra-block
matching mode, or have chosen the preference zero motion vector bias strategy. It is also
worth noting that H.263 performs MEMC in the original image resolution and thus it does
not generate a scalable motion vector field. On the other hand, the proposed wavelet-based
multiresolution MEMC is performed using a top-down hierarchical UCBDS motion search
and it supports a true multiresolution scalable motion vector field that is needed for spatial

resolution video scalability.

4.6 Conclusion

This chapter first motivated the need for motion estimation and motion compensation
(MEMC) in video compression, and then presented a brief survey of the various MEMC
approaches with particular focus on block-based matching algorithms. Based on the obser-

vation about the center-biasness of motion vector distribution in most video sequences, we

of different base reference values for the reference frame “locking” mechanism.
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(c) (d)

Figure 4.11: Reference frames from Foreman sequence: Frames (a) and (b) have poorer
motion compensation due to large motions; and frames (c¢) and (d) have better motion
prediction accuracy. Frames (a) and (c) have 10% for the base reference byte while frames
(b) and (d) have 20% for the base reference byte.
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Fa

(b) (c)

Figure 4.12: Comparison of block motion matching in the spatial domain and wavelet
domain using the Foreman video sequence: (a) An original video frame; (b) predicted
frame using H.263 motion estimation in the spatial domain; and (c) predicted frame using
the proposed multiresolution UCBDS in the wavelet domain.
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introduced a novel Unrestricted Center-Biased Diamond Search (UCBDS) block matching
algorithm that capitalizes on this fact. UCBDS also adopts a halfway-stop search strategy,
and has a best-case and average scenarios of only 13 and 15.5 block matches, respectively.
Extensive simulations further validated the theoretical search speed gain against other block
matching algorithms. For example, UCBDS could achieve up to 31% speed improvement
over the fast four-step search algorithm, and was over 13 times faster than the full-search
method using various test video sequences. In addition, UCBDS has also demonstrated
consistently better performance with various metrics such as the average prediction error
per pixel, probability of finding the true motion vector (with respect to the full-search),
average distance from the true motion vector, and average number of search points per

block.

In an effort to support spatial resolution video scalability, as well as other video scaling
parameters, we extended the proven monogrid UCBDS algorithm to a top-down multiscale
UCBDS framework where MEMC is carried out in the multiresolution scales of multiwavelet
subbands. This approach benefits from a multitude of good features, ranging from lower
computational complexity and no blocking artifacts to a multiresolution representation of
the motion vector fields. However, performing MEMC in the wavelet domain is plagued by
the inherent non-translational invariance property of critically-sampled wavelet transform.
In this respect, we discussed the possible difficulty of motion compensating high-frequency
wavelet signals, as well as the effect of motions with even and odd pixel shifts. Finally, we
presented some simulation results of predicted frames using the proposed multiresolution
wavelet-based UCBDS. It was shown that the prediction accuracy would deteriorate as the
distance between the current and reference frames becomes larger. Also, the choice of a
higher base reference byte while employing the reference frame locking mechanism can result
in better quality predicted frames at the expense of increasing the minimum decodable bit

rate in a given scalable bit stream.



Chapter 5

Multi-scalable Video Compression

Platform

“The secret of health for both mind and body is not to mourn for the past,
worry about the future, or anticipate troubles, but to live in the present

moment wisely and earnestly.”

Siddhartha Gautama Buddha (563 - 483 B.C.)

5.1 Introduction

In earlier chapters, we introduced and explained some new research results in the following
areas: (i) a framework to design good orthogonal and biorthogonal multiwavelet filters
and to apply them efficiently for multiresolution signal decomposition and reconstruction;
(ii) a multi-scalable video compression framework with a simple prediction frame locking
mechanism to achieve bit rate scaling; an efficient secured motion prediction loop to achieve
spatial resolution scaling; a temporal hierarchy structure to achieve frame rate scaling; and
an embedded bit stream hierarchy of frame blocks, layer blocks, resolution blocks, and color
blocks to achieve simultaneous multi-scalable video compression; and (iii) a wavelet-based
multiresolution motion estimation and compensation framework using the fast UCBDS

algorithm that secures the motion prediction loop and generates a spatially scalable motion

110
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vector field. This chapter carefully unifies these ideas to develop a novel multi-scalable video
compression platform that supports simultaneous bit rate, frame rate, spatial resolution,
and color video scalabilities at both the encoder and decoder. The primary goal here is
on the development of the proposed multi-scalable framework and algorithm exposition
of the scalable video encoder and decoder, rather than focusing on code optimization and
compression performance efficiency of the codec (which can be further optimized in separate

research).

A quick literature survey reveals the many research interests in subband or wavelet
coding of video as well as to achieve different types of video scalability. Among them,
video coding based on a three-dimensional (3-D) spatio-temporal subband decomposition
framework has been widely investigated. For example, Podilchuk et al. [95] proposed a
3-D subband coding of video, with the application of a new adaptive differential pulse code
modulation scheme for the lowest frequency band and a new geometric vector quantiza-
tion technique for the higher frequency bands. However, no explicit video scalability was
addressed. With the popularization of embedded or layered image coding strategies that
support bit rate scaling (such as the zerotree compression by Shapiro [99] and the SPTHT
compression by Said and Pearlman [97]), a new genre of scalable video compression frame-
works based on 3-D wavelet coding were introduced. Tham et al. [5] have extended the
spirit of zerotree image coding to a new 3-D zerotree data structure for video coding. In
that work, motion-compensated temporal decomposition of a group of video frames and a
new prioritization protocol for embedded video coding were employed to achieve simultane-
ous video scalability in terms of bit rate, spatial resolution, frame rate, color, and decoding
complexity. However, it was shown that the unresolved open issue of motion-compensated

temporal decomposition has limited its useful application to very low bit rate environments.

In a separate research, Taubman and Zakhor [110, 111] have also introduced a common
framework for rate and distortion based scaling using a 3-D subband coding approach; how-
ever, its rate-distortion performance is not much better than that of MPEG since no motion
estimation and compensation was employed. Other interesting research works include a ze-

rotree wavelet video coder [85], a scalable video codec using virtual zerotree [118], and an
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object-based scalable video codec [109]. In spite of the many research directions, none of
the above frameworks is capable of supporting multi-scalable video compression with effi-
cient and low-complexity encoding and decoding algorithms. All 3-D subband video coding
approaches inherit a number of intrinsic problems: large memory requirement to store the
entire set of frames for forward and inverse 3-D wavelet transforms; high frame coding
latency that renders it unsuitable for real-time interactive video applications; and blurred
reconstructed frames for the lower scale temporal resolution as a direct consequence of
lowpass filtering (averaging) along the motion-shifted video frames. This clearly motivates
the need for the proposed low-complexity multi-scalable video compression framework that

supports fine-granularity video scaling for a wide range of live and on-demand applications.

Section 5.2 begins with an overview of the multiwavelet-based scalable video framework
and defines terminology and notation that are useful for subsequent exposition. Section 5.3
then describes the algorithm development of the scalable video encoder with the help of
block diagrams and pseudocode. Two new algorithms are introduced in subsection 5.3.2:
Recursive direct splitting strategy in segmentation phase, and recursive overlay mapping
strategy in segmentation phase. Detailed working examples are also provided to explain the
two proposed recursive coding algorithms. Subsection 5.3.3 provides further insights into
how the proposed wavelet-based motion estimation and compensation can be integrated for
inter-frame coding. The corresponding scalable decoder counterpart with detailed examples
is then expounded in Section 5.4 for both intra-frame and inter-frame coding modes. This
is followed by subsection 5.4.3, which illuminates the degree and granularity of various
supported video scaling parameters. Finally, Section 5.5 presents some simulation results

and highlights two promising scalable video applications, followed by the conclusions.

5.2 Overview, Terminology, and Notation

This section presents the relevant terminology and notation that will aid the exposition of
the proposed multi-scalable video encoder and decoder. In the course of doing so, we will

be indirectly introducing a general overview of the video codec framework.
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Figure 5.1: Multiwavelet subband structure: (i) Luminance channel, Y; (ii) Chrominance
channel, U; and (iii) Chrominance channel, V.

We begin with a recapitulation of the subband structures of discrete multiwavelet
transform, as introduced in Section 2.4. It is noted that each color video frame or image,
Z, with the color triplets [R, G, B] is first transformed into the YUV 4:1:1 color domain,
and all subsequent processing of the proposed video codec is performed in this transformed
color domain. The subsampling ratio 4:1:1 denotes subsampling of the chrominance chan-
nels, U and V, by a factor of 2 in both horizontal and vertical directions. The luminance
channel, Y, represents the intensity (brightness) of a video frame, while the chrominance
channels, U and V, constitute the color information. In fact, a grayscale video frame can be
obtained by discarding the U and V color channels and setting their values to 128 during
reconstruction. The YUV color space and subsampling ratio are widely used in current
compression standards such as MPEG [59], [60], [61], and H.263 [62].

Applying the generalized discrete multiwavelet transforms, as proposed in Section 2.4,

we transform a video frame or image, Z, in the YUV domain to a multiwavelet-transformed
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frame, Zprw. Figure 5.1 illustrates the organization and labelling of the multiwavelet sub-
bands of Y, U, and V channels. The Y channel is decomposed into £ multiwavelet octave
scales (in this case, £ = 3); the U and V channels are decomposed into £ — 1 scales as a
result of the corresponding subsampling. The symbols V, H, D, respectively, denote the
vertical, horizontal, and diagonal orientation subbands of the decomposition at each reso-
lution scale, while the symbol L represents the lowpass-filtered subimages. In general, we
denote S € {L,V,H,D} as a subband segment, or simply, a segment. The subscripts, ¢
and k, of a segment Sy represent a subband k at a particular resolution scale, ¢, where
k € {1,2,3,4} and ¢ € {1,2,... ,L}. Also, let J € {Y,U,V} denote one of the three

channels.

In the following, we will introduce the terminologies with respect to the Y channel; the
corresponding notation for U and V channels is similar. As it is clear from the proposed
multiwavelet transform, a segment consists of a set of multiwavelet coefficients, s(m,n);
each coefficient comprises of a sign (denoted as siGN) and magnitude (denoted as MAG),

defined as:
+ if s(m,n) >0
siGN(s(m,n)) =
— if s(m,n) <0,
and

MAG(s(m,n)) = |s(m,n)|.

In an effort to improve the encoding efficiency, we will exploit the intra-subband (or intra-
segment) relationship among the multiwavelet coefficients within a particular segment by
encoding them in groups of adjacent coefficients. A group consisting of a set (or a rectan-
gular block, in particular) of coefficients is denoted by the parameters [m,n, M, N|, where
the block starts with a top-left reference coordinates (m,n) (with respect to the particular
segment, Sy, that the block lies in) and has dimensions of M and N in the horizontal and
vertical directions, respectively. Clearly, a block is actually a subsegment that constitutes

a portion of a segment. Hence, a subsegment or a block can be expressed as follows:

M—-1N-1

S k[m,n, M,N] = U U sek(m+a,n+0b),
a=0 b=0
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and a subband segment is represented as:
Sé,k[oa 07 Méa Né]a

where My and Ny are the dimensions of the subband segment at resolution scale ¢. The

dimension of a segment or subsegment is hence denoted as
piM(S[m,n, M,N]) :== {M,N}.

For concise notation, let us also define Sy x as the union of the four segments with the same
orientation and at the same resolution scale, ¢, such that:
4
Sex == Se-
k=1

In the process of encoding a segment of coefficients, we need to split the segment
into a small set of subsegments if the segment of interest is not homogeneous (a more
detailed definition will be given later). We have experimented with a number of splitting
configurations and decided to employ a strategy similar to the popular quadtree splitting
structure in our algorithms based on its simplicity and efficiency. Therefore each segment
can be split further when necessary; each split level of a segment (or subsegment) is thus
denoted by a superscript ¢q. The following split operator, =, will further illuminate the

splitting process of an inhomogeneous segment:

(1]

M
SYm,n, M,N] —  S%'[m m,n, 5,

M|EML2

N N M
Sq+1 - R
[mn+ 5 2779

)
where the four subsegments are denoted as Z(1)(S7), Z(2)(89), Z(3)(S?), and Z(4) (S?), respec-
tively, in that above order of appearance. Each subsegment can subsequently be viewed as
a new segment that may be further split into four other subsegments — recursive splitting.
Clearly, M, N > 2 for the splitting to be possible. Conversely, we can also define the inverse
split operator, Z !, for any one of the four split subsegments to be the previous (just before

splitting) segment from which that subsegment was derived from. Hence, we have

218 =871 vg>1, and = '(8% =8°
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As the proposed codec provides support for bit rate scalability, the algorithm encodes
in multiple embedded coding layers, ¢, where each subsequent coding layer further improves
the fidelity of a video frame that has been reconstructed using all previous coding layers.
Therefore, to be more specific, a subsegment at a particular coding layer, ¢, at a particular

split level, g, and of a particular channel, J € {Y,U,V}, can be denoted as
Sgilm,n, M,N], ¢,q=0,1,2,....

For concise notation, however, all or part of the subscripts and superscripts are omitted

whenever it is clear from the context.

In addition to intra-subband relationship, we also exploit inter-subband relationships
among subband segments at adjacent resolution scales. To do so, we represent the parent
(denoted as PARENT) of a particular segment (or subsegment) as the corresponding segment
(or subsegment) with the same orientation and subimage index at a higher (coarser) res-
olution scale; the inverse relationship is denoted as the child (denoted as cHiLD). More

specifically, we have the following parent-child relationships:

(

PARENT(L. ) = NULL

(
PARENT(V ;) = Lo
PARENT(S/x) = Syy1k;  except <
(
(

PARENT(H, ) = L. 3

’

D[,,k) L. 4y k= 1a273a47

and

= cHILD(S; ;) = NULL

(

(
CHILD(S; ) = Sg—1k;  except <

(

(

\

for S € {V,H,D}. This further leads to the following overlay mapping operator, Y:
T: Syplm,n, M,N] — Sy 1,[2m,2n,2M,2N]

for S € {V,H,D} and k = 1,2,3,4. The map operator for S € {L.2,L. 3,L 4}, however,
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is defined as follows:
Y: Lgaofm,n,M,N] — Up_, Vei[m,n, M,N],
Y: Lgalm,n,M,N| — Uj_, Hexlm,n, M, N),
YT: Lgafm,n,M,N] — U, Drilm,n, M,N],

and T(Lg 1) is undefined.

Associated with each coding layer, ¢, is a threshold, T., which differentiates one coding
layer from another (previous or future) coding layer. In order to generate an embedded
compressed bit stream, where a succeeding coding layer, ¢ = C' + 1, adds more refinement
information to a frame that has been reconstructed from all previous base coding layers,

¢ < C, we require that the set of thresholds, {7, c = 0, 1,...}, should satisfy
To>T; >...>Tc>Teysr > ...,

for some predetermined initial threshold, T. As shown in [1], the choice of Ty can be de-
termined adaptively on a frame-by-frame basis so that an “optimum” value of T will result
in improved compression performance. However, for the purpose of real-time application

such as video coding, we choose
1
Ty = Emax{s(m, n) € Iyw}-

In order to emulate an embedded bit-plane coding strategy (similar in spirit to that em-

ployed by Shapiro [99], and Said and Pearlman [97]), we set

1
Te=5Temts c=1,2,....

A multiwavelet coefficient, s(m,n), is considered significant at a coding layer, ¢, if

|s(m,n)| > T.; hence, we denote as s16.(s(m,n)) = 1. Otherwise, we denote s16.(s(m,n))

0 to show that a coefficient, |s(m,n)| < T, is insignificant at the coding layer, c¢. Obvi-
ously, if s1G.—c(s(m,n)) = 1, then we also have s1g.(s(m,n)) =1 for all ¢ > C in view of
the monotonously decreasing thresholds. The definition can be extended to represent the

significance of a segment, as follows:

1 ifdseS st [s|> T,
S1G.(S) =

0 otherwise.
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In other words, a segment is considered significant if there is at least one coefficient within
that segment is significant at the current coding layer; otherwise, the segment is insignificant

if all its coefficients are still insignificant.

Focusing only on those coefficients within a segment that are still insignificant at all
previous coding layers, we may further restrict the definition of significance of a segment
to be exclusive to a particular coding layer (say, ¢ = C') only. This ezclusive significance of

a segment can be expressed as follows:

1 ifdseS st. To <|s| < To—g
EXCLSIG((S) =

0 otherwise.

With these definitions, it is possible that a segment is significant at the current coding layer
but, at the same time, it is still exclusively insignificant. Also, an insignificant segment will
always imply exclusive insignificance but the converse may not always be true. As a result,
we say that a given segment is homogeneous if all those previously insignificant coeflicients
within the segment satisfy either one of the following conditions at the current coding layer:
(i) those coefficients are all exclusive significant, or (ii) those coefficients are all exclusive
insignificant. Clearly, if all coeflicients within a segment have already been significant at
a previous coding layer, the segment is considered homogeneous at the current and all
future coding layers. Otherwise, the segment is considered inhomogeneous or heterogeneous
if it contains a mixture of exclusive significant and exclusive insignificant coefficients at the
current coding layer.

We can now classify a segment into the following two complementary significance re-
gions, R, and R’., which are representative of the collections of significant and insignificant

multiwavelet coefficients, respectively, at a coding layer c:

ReS)=iseS:sas) =1 | s _R(s) U RUS).
R’.(S) = {s € S :s16.(s) =0}

These significance regions can then be overlay-mapped from a parent segment onto a child

segment to provide a statistically reliable guide for contextual coding of multiwavelet co-

efficients in the child segment. For notational simplicity, let us also denote the following
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mapped significance regions:

M.(S;) := TY(R.(rPareNT(Sy))),

M’.(Sy) = T(R’.(PARENT(Sy))),

for a resolution scale, £. Equivalently, we can view a mapped significant (or insignificant)
region as the set of multiwavelet coeflicients in the child segment at resolution scale £ whose
corresponding parent coefficients at resolution scale £ 4 1 are significant (or insignificant)
at the current coding layer, c. Clearly, the mapped significance regions are only defined for

those segments that have valid child segments.

5.3 Multi-scalable Video Encoder

This section details the proposed algorithms for compressing a video source into a binary
bit stream consisting of multiple resolution blocks that supports flexible video scalability.
The following subsection first describes the various types of redundancies present in video
coding, and shows how they can be exploited for improved compression performance. This is
followed by a meticulous discussion of the scalable video encoder. Pseudocode and examples
of main encoding procedures are given to help illuminate the steps involved in generating

a scalable compressed bit stream.

5.3.1 Exploitation of Redundancies

For efficient video coding, the encoder algorithm has to exploit the various redundancies that
are present in the video frames. The following describe five different types of redundancies,

and briefly point out how they can be exploited in the proposed video encoding algorithms:

e Intra-subband: Although the multiwavelet coefficients are decorrelated after the
transform, they are not independent even within a subband segment. There is a high
probability that adjacent coefficients within a small neighborhood exhibit similar val-

ues, especially in homogeneous (smooth) regions of an image. This interdependence
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within a neighborhood can be exploited by encoding a group of multiwavelet coeffi-

cients together in blocks or subsegments.

e Inter-subband: On a similar note, there exists interdependency between coefficients
(or subsegments) across different resolution scales; this is primarily due to the self-
similar structure of octave-bandwidth multiwavelet transform. A parent segment will
have a one-to-four dependency with its child segments. Conversely, the significance
characteristics of coeflicients in a child segment will be closely related to that of the
parent segment. This interdependency can be exploited by mapping the significance
regions of the parent segment onto the child segment, and using these overlay maps

to guide the encoding of the coefficients of the child segment.

e Inter-channel: This is due to the presence of luminance and chrominance channels
in a color image or video frame. Although the channels are decorrelated via trans-
formation from RGB to YUV domain, there still exist some dependencies among
segments across the channels, both within the same resolution scale and across scales.
Such dependencies can be exploited by using a similar overlay mapping strategy from

one segment onto another segment across the channels.

e Inter-coding layer: This is due to the fact that the magnitudes of multiwavelet
coefficients are being encoded in multiple embedded coding layers. Since the series
of thresholds are monotonically decreasing, coefficients that are already significant
in a previous coding layer will definitely be significant with respect to the threshold
at a future coding layer. This also means that only insignificant coefficients at all
previous coding layers need to be evaluated and encoded in the current coding layer.
By excluding all significant coefficients when encoding a segment at a particular seg-
mentation phase!, the algorithm can focus on effective coding of those coefficients
that are still insignificant within the segment. Also, the overlay map of the significant
region (as a union of all the significant regions across all previous coding layers up

to the current layer) from its parent segment will provide some contextual hints in

!These significant coefficients will then be refined during the refinement phase.
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addition to its own significance regions.

e Inter-frame: There exist high temporal correlations between adjacent video frames,
especially in regions of frames without large motions (e.g. object occlusions, scene
cuts, etc.). Motion estimation can be a very effective mechanism to exploit such
correlations. In doing so, a set of motion vectors that map blocks from a reference
segment (in a reference frame) onto blocks of the current segment (in the current
frame) are estimated using a fast block matching algorithm. The difference between
the current segment and the motion-compensated segment can then be encoded in a

more effective manner with fewer bits (even after encoding the motion vectors).

5.3.2 Intra-Frame Scalable Encoding Algorithms

As explained in Section 3.4 and in the general overview earlier, we have presented a brief
introduction to the proposed scalable video codec and how the multi-scalable compressed
bit stream is organized into embedded frame, layer, resolution and color blocks. This
subsection will further explain the scalable encoder algorithms with appropriate pseudocode

and examples.

The proposed scalable video encoder consists of two main components: (i) switch-
ing between the intra-frame coding mode and the inter-frame with motion compensation
coding mode; and (ii) generating a highly scalable compressed bit stream that consists of
resolution blocks for both coding modes. The first component has been clearly explained in
Subsection 3.4.3 with a procedure to select the appropriate reference frame for inter-frame
motion estimation so as to support temporal scalability of a certain granularity. In con-
trast to the inter-frame coding mode, intra-frame coding does not depend on a previously
encoded frame, and hence it requires no motion compensation. Nevertheless, the scalable
algorithms that are employed for encoding the subband segments are, in fact, similar in
both coding modes, except that the content (i.e., the values of the multiwavelet coefficients)
of the segments will be different after motion compensation. In view of this, we will focus
the following exposition of the encoder algorithms in the context of intra-frame coding of a

particular multiwavelet-decomposed color frame. Clearly, this is directly applicable to still
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image coding as well.

As pointed out earlier, the scalable encoder encodes in multiple embedded coding lay-
ers, where each layer comprises of two coding phases: segmentation phase and refinement
phase. In each coding phase, all subband segments in the luminance and chrominance chan-
nels are encoded to generate the resolution blocks. In order to simultaneously support the
various video scaling parameters, a prioritization protocol (see also [5]) is needed to encode
the segments in a specific order. Employing this protocol, all segments in the luminance
channels are encoded first before encoding those in the chrominance channels. Within each
coding layer, segments within the same resolution scale are grouped and encoded into one
resolution block, starting from the lowpass subimage (with the lowest frequency content)
to the finest resolution scale. This also means that parent segments are always encoded

prior to encoding the child segments.

During a segmentation phase at a particular coding layer, each coefficient in a segment
is classified (segmented) as either significant or insignificant with respect to the thresh-
old associated with the coding layer. In each coding layer, the position and magnitude
of each significant coefficient are (indirectly) encoded simply by the above thresholding
mechanism (which implies that the magnitude lies between the current threshold and the
larger threshold of the previous coding layer) using a specific coefficient scanning order.
The corresponding sign (either a positive or negative) is encoded explicitly. After encoding
all segments with this segmentation phase, a refinement phase is performed for the same
coding layer. It is noted that the magnitudes of significant coefficients have been coarsely
quantized with relatively large quantization bin sizes. Clearly, this results in large quanti-
zation errors and hence poor quality of the reconstructed frame. To remedy this weakness,
the refinement phase will add another bit of precision by halving the quantization bin sizes.
In essence, each subsequent coding layer will identify more new significant coefficients and
also refine the precision of all previously significant coefficients. Such a multi-layer coding
strategy with successive refinement of significant coefficients has been successfully employed
in popular image codecs, such as those proposed by Shapiro [99], and Said and Pearlman

[97).
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EncodeOneColorFrame( ) {
¢ = 0; /% initialize current coding layer */
/* encode until the target bit budget for current frame is exhausted */
while(current_bits_used < allocated_frame_bits) {
/* encode each of both coding phases alternately */
for(phase € {Segmentation, Refinement}) {
/* encode luminance component */
EncodePhase (Lgl)’c’o, LgQ)’C’O, ng’c’o, Lgﬁ}),c,oa phase);
EncodePhase (V(Zl)éc’o, H(g}){,c,oj Dgl)éc’o, phase);
InsertHeaderAndPacketize( );
for(each remaining resolution scale, f=L—-1,...,1) {
EncodePhase (V%{)’C’O, Hg{),c,o’ D%{)’C’O, phase) ;
InsertHeaderAndPacketize( );
}
/* encode chrominance components, if necessary */
if(it is a color frame) {
EncodePhase (L(EU_)f’lo, Lfcv_)f’o, phase) ;
EncodePhase (L{ ;% , LU7i% LUV L) LDl LVh0 phase) ;
InsertHeaderAndPacketize( );
for(each remaining resolution scale, /=L—-2,...,1) {
EncodePhase(VgQ’c’o, VE}Q’C’O, Hgﬁ’c’o, HE}Q’C’O, Dgﬁ’c’o, D%{),a,o’ phase);

InsertHeaderAndPacketize( );

¥

} /* next coding phase */
CtH+;

2

} /* next coding layer */

Figure 5.2: Pseudocode for encoding a color frame into resolution blocks with appropriate
headers in order to generate a highly scalable compressed bit stream.
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Figure 5.2 presents the pseudocode for encoding a color frame into appropriate res-
olution blocks. It also clearly outlines the order of encoding the segments according to
the prioritization protocol. The function EncodePhase () is responsible for encoding one
segment (by choosing a segment at a time from the input list of segments) using either the
segmentation or refinement phase. For the segmentation phase, a segment can be encoded
using either one of two different coding strategies: (i) recursive direct splitting, which en-
codes a segment without a valid parent; or (ii) recursive overlay mapping, which exploits
encoded information of a parent segment to guide the encoding process of a (child) seg-
ment. Detailed explanation on these two coding strategies will be the emphasis of the next
two subsections. Also, the algorithm for performing the refinement coding phase will be

explained.

5.3.2.1 Recursive Direct Splitting Strategy in Segmentation Phase

Figure 5.3 illustrates the pseudocode for encoding a given segment at a particular coding
layer using the recursive direct splitting strategy (via the DirectSplitEncodeOneSegment ()
function). As mentioned, the segment that is to be encoded does not have a valid parent
segment. Nonetheless, this coding strategy exploits intra-segment relationship by encoding
blocks of neighboring coefficients. A symbol is entropy encoded to represent the homogene-
ity of the segment. If the segment is heterogeneous, it will be split via the split operator =;
each of the four subsegments will further be split (if necessary) and encoded in a depth-first
recursive manner until its dimensions become smaller than a predetermined value min_dim,
or the subsegment at a particular split level, ¢, is homogeneous. If the dimensions reach
a minimum size, splitting is terminated and the function EncodeSubsegment () is called.
Figure 5.4 presents the pseudocode of this function, which essentially encodes the signs
and positions of all exclusive significant coefficients within the segment in a raster-scan

(left-to-right and top-to-bottom) order.

Example 5.1.

Consider an example 4 x4 segment, Sy, as portrayed in Figure 5.5. Assume that the example

segment does not have a valid parent segment, and hence it is encoded using a recursive
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DirectSplitEncodeOneSegment(S&Qﬁﬂ) {
/* terminate recursive splitting if the dimension is small enough */
if (max{p1M(Sy}) N} <= min_dim) {
EncodeSubsegment(S%Qﬁﬂ);
return;
}
/* adaptive entropy encode the exclusive significance of current segment */
AdaptArithEnCSym(EXCLSIGC(Szgﬂﬂ), amodelC) ;
/* recursive split the current segment into four subsegments */
if(S&Qﬁﬂ is heterogenous) {
DirectSplitEncodeOneSegment(E(U(Szgﬁﬂ));
DirectSplitEncodeUneSegment(ECD(SZQﬁﬂ));
DirectSplitEncodeOneSegment(Eﬁﬂ(Szgﬂﬂ));

DirectSplitEncodeOneSegment (=) (SEJk)’c’q) )

()

Figure 5.3: Pseudocode for encoding a given segment, S (k> ata particular coding layer, c,
using a recursive direct splitting strategy.

direct splitting strategy. In fact, this segment may equally well be a split subsegment
at a particular split level g. Let the small squares within this segment represent each of
the 16 multiwavelet coefficients. Those marked with “4+” and “-” are exclusive significant
coefficients at the current coding layer; those marked with “®” and “©” are coefficients
that have already been significant prior to the current coding layer; and those unmarked

denote insignificant coefficients at the current coding layer c.

Table 5.1 illustrates the steps for generating the bit stream of encoding the exam-
ple segment using the recursive direct splitting algorithm, as presented in Figure 5.3. For
this example, we set the constant min dim = 2 in Figure 5.3 so that the recursive split-
ting terminates when a subsegment reaches the dimensions of M = N = 2. We begin
with arithmetic encoding the exclusive significance of the 4 x 4 segment (i.e., the symbol

EXCLSIGC(SE’]S [m,n,4,4]), which clearly is a 1 as there are three “+” and one “-” exclu-
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EncodeSubsegment(Ska)’c’q) {
/* encode a bit representative of the significance of subsegment */
AdaptArithEncSym(EXCLsIGC(S%g’c’q) , amodelD) ;
/* encode information of significant coefficients within subsegment */

/* in a raster-scan manner from left-to-right and from top-to-bottom */

for(each coefficient s.t. siG. i(s € SEJk)’C’q) == 0) {
if(s1G.(s € SEJ,C)’C’(I) == 1) { /* significant coefficient */

AdaptArithEncSym(sign(s), amodelE);
s = MAG(s) — T;
}

else AdaptArithEncSym(0, amodelE); /* insignificant coefficient */

Figure 5.4: Pseudocode for encoding the multiwavelet coefficients of a given subsegment,
SEJk), at a particular coding layer, c.

sive significant coefficients within this segment. Consequently, the heterogeneous segment is
split via = into four 2 x 2 subsegments: SZ; [m,n,2,2], SZ; [m+2,n,2,2], Slec [m,n+2,2,2],
and Slec[m +2,n 4 2,2,2]. The subsegment E(1) is first evaluated and is encoded with a
1 as it contains one “+”7 exclusive significant coefficient. As it is evident from the pseu-
docode in Figure 5.3, the recursive splitting process is depth-first instead of breath-first.
Hence the subsegment Z(;) will be further split and encoded first before considering sub-
segments Z(y),Z(3), and E4). Since the dimensions of =(;) have reached a minimum of
2 x 2, the four multiwavelet coefficients, s, will now be encoded by calling the function
EncodeSubsegment (SZ}C[m,n, 2,2]). This produces a symbol 0 for the exclusive insignif-
icant coefficient, s(0,0), and a symbol + for the exclusive significant coefficient, s(1,0),
which has a positive sign. The other two coefficients, s(0,1) and s(1,1), need not be en-
coded (hence, denoted by the symbol “?” in Table 5.1) as they would have been encoded
in a previous coding layer; this indirectly exploits the inter-coding layer dependency of

coeflicients.
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_|_

0@+ O

Figure 5.5: Example of a 4 x 4 segment that is encoded at a particular coding layer, c,
using recursive direct splitting.

M x N 4x4|2x2 1x1
@ | @ o+
Bit stream @ [©0o+7)
(0) (?)
1) | (+0-0)

Table 5.1: Example of encoded bit stream of a segment using recursive direct splitting.

When the function EncodeSubsegment (SZ’}C[m,n, 2,2]) returns, the exclusive signifi-
cance of the subsegment = (y) is encoded; in this case, a symbol 1 is generated because of the
presence of one “+7 coeflicient. This leads to calling the function EncodeSubsegment (Szi [m+
2,n,2,2]), which produces three symbols: 0, 0, and +. Next, the subsegment E3) s en-
coded with a 0 as it has no exclusive significant coefficients at all. Finally, the subsegment
E(s) is encoded with a 1 for having two exclusive significant coefficients, and the call to
the function EncodeSubsegment (SZ:i [m+2,n+2,2,2]) yields the four symbols: +, 0, —,
and 0. As a result, the symbol stream representing the encoding of the 4 x 4 segment,

SZ’,(; [m,n,4,4], via a recursive direct splitting strategy is given by

(1’1’07 +’ 170707 +7 071’ +’ 0’ B 0)’
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which is essentially a two-symbol stream (i.e., 1 or 0). However, the symbols generated
while encoding the 1 x 1 subsegments/coefficients form a three-symbol stream (i.e., 0,4+,
or —).

We can effectively entropy encode the above symbol stream by switching adaptively
between a two-symbol and a three-symbol arithmetic model (see e.g. [119]) according to
the subsegment that is being encoded. For simplicity, a fixed two- or three-alphabet model
with predefined probabilities can be used. However, improved compression performance
can be expected by employing an adaptive model where the probability distributions of the
symbols are updated only after a new symbol has been encoded. As expounded in [119], an
adaptive arithmetic model can better keep track of the actual probability distributions of
various symbols and hence better approach the entropy limit of the source. In addition, we
can also exploit some other information (or clues) during encoding by adopting a conteztual
modelling/switching approach that uses a finite set of adaptive models, each being tailored
to a particular context (see e.g. [32, 90]). The contexts provide some form of prediction for
switching to the appropriate adaptive model when encoding a symbol. If the contexts are
reliable, the probability distribution of each adaptive model will become skewed (biased) to
a certain symbol, although the overall probability distibution of the symbols can be equally
likely. The arithmetic encoder, therefore, can encode the same symbol stream with fewer

bits. Context switching is employed in our next coding strategy.

5.3.2.2 Recursive Overlay Mapping Strategy in Segmentation Phase

Unlike the recursive direct splitting technique, the recursive overlay mapping strategy also
exploits inter-subband relationships across resolution scales in addition to intra-subband
relationships. As explained in the overall algorithm in Figure 5.2, a parent subband is
encoded prior to its child subband in every coding layer. This means that the encoded
information of a parent segment at a particular coding layer can be used to provide some
contextual guide for encoding the child segment at the current and future coding layers.
In the proposed algorithm, we will map the significant and insignificant regions of a parent

segment, and then overlay the map as a mask onto the child segment, with the sole object of
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OverlayMapEncodeOneSegment(S&Jk)’c’q) {
/* terminate recursive splitting if the dimension is small enough */
if (max{p1M(S{?*")} <= min_dim) {

EncodeSubseg‘ment(S&Jk)’c’q) ;  return;

}
/* adaptive entropy encode both significance regions of current segment */
if(I{c(PARENT(SEi}qq)) != NULL) { /* both significant overlay and */
if(fl%(PARENT(SZQﬂﬂ)) = NULL) { /* insig. overlay are present */
if (ExcLs1G (R (271 (S{})9D)) == 1)
AdaptArithEncSym(excLs 16, (M (S{7))), amodeld);
if (ExcLs1c: (R’ (271 (8} D)) == 1)
AdaptArithEnCSym(EXCLSIGC(Ll%(Szgﬁﬂ)), amodelB) ;
} else { /* only significant overlay is present */
if (xcLs1Ge (R (21 (S{)9D)) == 1)
AdaptArithEncSym(EXCLsIGC(hdc(S&Q””)), amodelA) ;
else return;
}
} else { /% only insignificant overlay is present */
if (excLs1e (R (2 1(SY}) D)) == 1)
AdaptArithEncSym(ExcLSI1G, (M’ (S{})“))), amodelB);
else return;
}
/* recursive split the current segment into four subsegments */
if(S&Qﬁﬂ is heterogeneous) {
UverlayMapEncodeUneSegment(E(U(Szgﬁﬂ));
OverlayMapEncodeOneSegment(ECD(Szgﬁﬂ));
UverlayMapEncodeUneSegment(ECD(Szgﬁﬂ));

UverlayMapEncodeUneSegment(EOQ(Sggﬁﬂ));

Figure 5.6: Pseudocode for encoding a given segment, S;’, at a particular coding layer, c,
using a recursive overlay mapping strategy.

}
()
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Figure 5.7: Example of a 8 x 8 child segment that is encoded at a particular coding layer,
¢, using recursive overlay mapping.

further improving the overall compression efficiency. The motivation for doing this is based
on the observation that, if a parent coefficient is insignificant, there is a high probability that
the coefficients in the corresponding child segment will be exclusive insignificant. Also, if a
child coefficient is exclusive significant at a particular coding layer, then the corresponding
parent coefficient is very likely to be significant. Hence, it is envisaged that there will be
significant savings in the number of bits used if the overlay maps have provided reliable con-
texts when encoding a child segment. Figure 5.6 presents the pseudocode for the proposed

recursive overlay mapping algorithm (via function OverlayMapEncodeOneSegment ()).

Example 5.2.

In this example, we assume the segment that is to be encoded has a valid 4 x 4 parent
segment (as shown in Figure 5.5) which we had encoded earlier in the previous example
for recursive direct splitting. Figure 5.7 portrays the 8 x 8 child segment that is to be
encoded at the same current coding layer, ¢, as that for the parent segment. The signs
of the significant and exclusive significant coeflicients, as well as the insignificant coeffi-
cients, are shown using the same notation. Consider the current segment SZ’Z[m,n, 8,8].

To begin the encoding process in Figure 5.6, we set EXCLSIGC(R’C(E*I(SZ,(;))) = 1, and
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M x N 8x8|4x4|2x%x2 1x1

(11) ] (00)
(10)| (7) (7)
(7) (7)
(1) 1 (0-++)
Bit stream (1) | (?-00)
(7 0)
11| (1) | (0-0-)
(0)
1) | (++07)
(?) | (+0-0)

Table 5.2: Example of encoded bit stream of a segment using recursive overlay mapping.

the constant min_ dim = 2. We also overlay map the significant and insignificant regions,
R.(ParENT(S})) and R’.(PARENT(S;7[)), of the parent segment onto the current segment;
these maps are distinguished by the shaded and unshaded regions, respectively, in Fig-
ure 5.7. It is worth emphasizing that the overlay significant map is due to all the significant
coefficients in the parent segment so far, and not only due to the exclusive significant
coefficients there at the current coding layer.

Table 5.2 helps explain the algorithm presented in Figure 5.6 by showing the steps
involved in generating the bit stream of a child segment using a recursive overlay mapping
technique. We start with the 8 x 8 segment, SZ:g[m,n,8,8]. As it contains both the
significant and insignificant overlay maps, a symbol may? be generated for each of these
maps. The set of coefficients in the current segment that is masked with a significant overlay
map is always encoded before the complementary set that is masked with an insignificant

overlay map. In this example, a symbol EXCLSIGC(MC(SZ’I(;)) = 1 is produced for the overlaid

2Note that a symbol need not be produced for an overlaid region that is either already completely
significant in a previous coding layer, or its similar region in the previous (larger) segment before the

splitting has no exclusive significant coefficients.



CHAPTER 5. MULTI-SCALABLE VIDEO COMPRESSION PLATFORM 132

)

significant region (as it contains four “+” and four exclusive significant coefficients), and

a symbol EXCLSIGC(M’C(SZg)) = 1 is then generated for the overlaid insignificant region

(as it contains one “+” and one “-”

exclusive significant coefficient). It is noted, however,
that the symbols are arithmetic entropy encoded using different adaptive models (namely,
amodelA and amodelB, as shown in Figure 5.6) that are tailored to the contexts provided

by the corresponding significance regions of the parent segment.

The algorithm splits the current segment into four subsegments using the operator
=, and then calls the recursive function OverlayMapEncodeOneSegment (Szllc[m,n,él,él]).
Clearly, the current 4 x 4 segment contains both overlaid significant and insignificant re-
gions, each of which generates a symbol 0 as they have no exclusive significant coefficients.
In other words, the segment Slec [m,n,4,4] is homogeneous, and this terminates the split-
ting process of the current segment at split level ¢ = 1. It then proceeds to recursive
encode the 4 x 4 segment, Sg:,t [m + 4,n,4,4], which also contains both overlaid significant
and insignificant regions. The significant mapped region of the current segment produces a
symbol EXCLSIGC(MC(SZIt [m+4,n,4,4])) = 1 as it comprises two “+” and two “-” exclu-
sive significant coefficients. The insignificant mapped region, however, generates a symbol
EXCLSIGC(M’C(SZk [m+4,n,4,4])) = 0 because all the eight coefficients are insignificant at

the current coding layer.

As there is at least one exclusive significant coefficient, the heterogeneous 4 x 4 segment
is further split into four 2 x 2 subsegments with ¢ = 2. This is followed by calling the
recursive function OverlayMapEncodeOneSegment(SZ; [m+4,n,2,2]). Clearly, this 2 x 2
subsegment contains only an overlaid insignificant region. Since ExcLs16.(R’.(Z71 (SZ’IQC [m+
4,n,2,2])) = 0, it has already implicitly implied the absence of any exclusive significant
coefficients in the subsegment; hence, no symbol is generated. By the same token, no
symbol is produced for the next 2 x 2 subsegment Szz[m + 6,n,2,2]. However, the third
2 x 2 subsegment, Sg:z [m + 4,n + 2,2,2], which comprises only the overlaid significant
region, is encoded with a symbol 1 as it contains three exclusive significant coefficients. It

is also noted that no additional symbol is needed to represent the absence of an overlaid

insignificant region in the subsegment since this piece of information has had been implicitly
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conveyed by exploiting the overlay maps of its parent subsegment. As the subsegment’s
dimension now reaches min_dim, the function EncodeSubsegment (S;:z [m+4,n+2,2,2]) is
called to generate the following four symbols: 0, —, +, and 4. Lastly, the fourth subsegment,
Szz [m + 6,n + 2,2,2], is encoded with a symbol 1 to represent the presence of at least
one exclusive significant coefficient. The positional and sign information of the exclusive
significant coefficients is further encoded by the function EncodeSubsegment () as three
symbols: —, 0, and 0. Note that the first positive coefficient, which was already significant
in a previous coding layer, is not encoded (an example of exploiting inter-coding layer

redundancy).

The algorithm continues to recursively encode the next 4 x4 segment, SZ’}C [m,n+4,4,4].
Since it does not contain an overlaid significant region, no symbol is generated. The overlaid
insignificant region, however, is homogeneous as being exclusive insignificant, and hence it
is encoded with only one symbol 0. The segment need not be recursively split and no other

symbols are generated.

Lastly, the last 4 x 4 segment, SZi [m 4+ 4,n + 4,4,4], is recursively encoded. Two
symbols, 1 and 1, are generated to convey the presence of at least one exclusive significant
coefficient in the overlaid significant and insignificant regions, respectively. The segment
is further split into four 2 x 2 subsegments. The first subsegment, SzZ[m +4,n+4,2,2],
is encoded with a symbol 1 to denote the presence of two exclusive significant coefficients,
which are subsequently encoded with a symbol stream of 0, —, 0, and —. The second sub-
segment, which is homogeneous with no exclusive significant coefficient, can be completely
encoded with only a symbol 0. Similar to the first subsegment, the third subsegment,
Sg:z [m +4,n + 6,2,2], is first encoded with a symbol 1 and then followed with a symbol
stream of 4, 4+, and 0. Finally, we encode the fourth 2 x 2 subsegment SZ’IQC [m+6,n+6,2,2].
It is worth noting, however, that the expected symbol 1 that represents the presence of two
exclusive significant coeflicients in this subsegment is not needed. Recall that the symbol
of EXCLSIGC(M’C(Efl(SE:z [m 4+ 6,n + 6,2,2])) = 1 has had encoded the presence of exclu-

sive significant coefficients within the overlaid insignificant region of the previous (larger)

segment, S;’,t [m +4,n +4,4,4]. Since the homogeneous subsegment S;’z [m+6,n +4,2,2]



CHAPTER 5. MULTI-SCALABLE VIDEO COMPRESSION PLATFORM 134

- 8@% —— 6@ —— 6@) —— 6@; —— 6‘3 —— 8(2 —— 6@ —a-- 6(3{ - 5(13) e 3 e §D = 0 o~ (52) —— 6%) —— 6[7) e
e Bl Bl e e ) s ) e (]
|
|
R ) e o B e ]
|
I | | | | | | | |
I 1 1 1 1 1 1 1 1
a0, To T, T, 0 Loon T 2,

Figure 5.8: Progressive refinement of quantization bin sizes of significant coefficients.

has no exclusive significant coefficients, it is implicitly known that the fourth subsegment
Sg’z [m + 6,n + 6,2,2] must have at least one exclusive significant coefficient. It is subse-
quently encoded with four symbols: +,0, —, and O.

As a result, the 8 x 8 segment SZ’z [m,n,8,8] is completely encoded using a recursive

overlay mapping strategy with the following symbol stream:
(17 170707 1707 1707 T +7 +7 17 T 070707 17 17 1707 Bl 07 Bl 07 17 +7 +7 07 +7 07 T 0)7

which is also essentially a two-symbol stream, except for those symbols produced by the
function EncodeSubsegment (), which constitutes a three-symbol stream. As it has been
pointed out earlier, a contextual switching approach that employs multiple two- and three-
alphabet adaptive models is used to encode the symbol stream according to some contexts.
Obviously, it is important that the switching from one adaptive model to another must
be implicitly known by the decoder without any overhead. This can be guaranteed if the
contexts at the encoder are derived only from causal information such that the decoder can

later reproduce the same contexts while decoding the stream.

5.3.2.3 Progressive Precision Enhancement in Refinement Phase

The main object of performing the refinement phase in each coding layer is to progressively
enhance the precision of all previously significant coefficients. Recall that the threshold,
T,, that is associated with each coding layer, ¢, is halved for the next coding layer. To
help us better understand the relationship between threshold values and quantization bin
sizes, consider the illustration in Figure 5.8. Let the bold horizontal line denote the value

of coefficients within a segment. The markings on the line partition the dynamic range
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into a finite number of octave-width significance layers according to the set of thresholds,
Ty, Tq,.... Note also that the partitions are symmetrical about the value 0, which separates
positive coefficients on the right-half from negative coefficients on the left-half. For each
coding layer, ¢, we have a set of mutually exclusive (non-overlapping) quantization bins,
(52_3, k=1,2,...,2°", where each coefficient must belong to only one of these bins at any

time.

For simplified notation in the following exposition, we will use only the right-half of
the quantization bins by considering the magnitude of coefficients (their signs are encoded
separately). After the segmentation phase in the first coding layer, ¢ = 0, the threshold

Ty will discriminate all coefficients within a segment as either insignificant (inside bin 550))

or significant (inside bin 550)). Without any additional information about the frequency
distribution of coefficients within each bin, the assumption of a wniform distribution is
found to be reasonable. Consequently, it is easy to prove that the optimum reconstruction
value (in the least mean square error sense) for each bin will be given by the middle-point
of the bin. Hence, the reconstruction values of insignificant and significant coefficients after
the first segmentation phase are %To and %Tg, respectively. As pointed out earlier, the
mean reconstruction error now is clearly very high because of the large quantization bin
sizes, which correspond to coarse quantization. To enhance the precision of reconstruction
values, the bin sizes have to be reduced (in this case, they are halved). As is evident in the
next coding layer, ¢ = 1, the bin 550) is partitioned into two smaller non-overlapping bins:
551) (lower bin), and 54(11) (upper bin). Hence, in general, we can improve the reconstruction
values by another bit of precision in the refinement phase via the refinement operator, A,

such that:
A {57} — )y v Rty
where {5;::11)} N {(55(,';“)} =0, for k=1,2,...,2¢"%
Figure 5.9 shows the pseudocode for performing the refinement phase of a segment in
one coding layer. For a particular coding layer ¢ = C, only coefficients that have already

been significant in previous coding layers (i.e., ¢ < C) will be refined. In other words,

exclusive significant coefficients at the current coding layer, ¢ = C, will only be refined
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RefinementEncodeOneSegment(S&Qﬁﬂ) {
/* encode sig. coefficients within segment in a raster-scan manner */
/* exclude exclusive sig. coefficients in the current coding layer */
for(each coefficient s.t. SIG._1(s € Séi}gq) == 1) {
if(bit = (s > T,))
s -= T¢;

AdaptArithEncSym(bit, amodel);

}
()

Figure 5.9: Pseudocode for performing the refinement phase of a given segment, S v at a
coding layer, c.

from the next coding layer onwards. This procedure is clearly depicted in Figure 5.8 by
employing the refinement operator, A, in each coding layer. It also means that there is no
refinement phase for the first coding layer, ¢ = 0. For each significant coefficient that is
to be refined, the index of the smaller bin (i.e., either the lower or upper bin) which the
coefficient lies in will be entropy encoded using an adaptive arithmetic model. Multiple
adaptive models can also be used for contextual switching, but this often contributes, if
any, only marginal improvements because the probabilities of coefficients lying in the lower
and upper bins are almost equal. Hence, the modelling (prediction) process is usually not

very accurate and no significant coding gain can be expected.

5.3.3 Inter-Frame Scalable Encoding Algorithms

Recall from subsections 3.4.1, 3.4.2 and 3.4.3 about the various problems that could im-
pede the development of a truly multi-scalable video coding platform. We have proposed
a solution to each of the problems and explicated how the various coding segments are
organized in multiple embedded layers to generate a multi-scalable bit stream that simul-
taneously supports bit rate, spatial resolution, frame rate, and color video scalabilities. In
this subsection, we will further analyze the encoding algorithms for inter-frame coding of
a video frame using the wavelet-based multiresolution motion compensation framework, as

described in subsection 4.4.2. Appropriate block diagrams are also used to help illuminate
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the proposed “prediction frame locking” mechanism and the generation of multiresolution

motion vector fields.

Referring to the subband structure in Figure 3.1, the proposed multiresolution motion
compensation process will perform motion estimation on each subband to determine the
motion vector field. The motion fields corresponding to all the subbands within a given res-
olution scale (as marked by a cross in Figure 3.1) are then aggregated for entropy-encoding
before being output to the bit stream. For ease of exposition, we may logically group the
motion estimation process to each resolution scale (i.e., all the subbands corresponding
to a particular resolution block), as depicted by the wavelet-based motion estimation and
motion compensation (MEMC) block in Figure 5.10. In fact, the MEMC module will first
perform motion estimation and then encode the motion predicted residues of the subbands

in the corresponding resolution scale (as illustrated in Figure 5.11).

To better understand the inter-frame scalable encoding process, let us refer to Fig-
ure 5.10. In order to initiate the multiresolution block matching process, both the discrete
multiwavelet transformed frame and the corresponding multiwavelet transformed reference
frame (which is determined using the temporal hierarchy structure shown in Figure 3.2) are
provided as inputs to the algorithms. The DEMUX units essentially split the input and
reference subband structure into multiple spatial resolution scales for the MEMC module.
The SW switching units that precede the inputs to the MEMC modules serve to control
spatial resolution scalability at the encoder. In effect, each SW unit is either turned on or
off depending on whether the corresponding resolution scale is required for encoding. When
only a reduced spatial resolution video is required during encoding, the SW corresponding
to the finer resolution scale is turned off. MEMC is performed for all the pertinent subbands
for which SW is turned on, and the resulting motion vector fields are then embedded into
the compressed bit stream at the position shown in Figure 3.3, thus achieving simultaneous
video scalability. These various scalable segments of the bit stream for the current frame
are then transmitted via the communication channels, or they are aggregated and stored

in a compressed file.

Figure 5.11 provides greater insights into the MEMC module, which accepts the res-
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Figure 5.10: Block diagram for encoding an inter-coded video frame using the proposed
wavelet-based multiresolution UCBDS algorithm. It also shows how spatial resolution and

bit rate scaling can be controlled during the encoding process.
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Figure 5.11: Block diagram for encoding a resolution block (or a subband segment) using
the proposed wavelet-based multiresolution UCBDS algorithm. It also illustrates how the

problems of error propagation and loss of prediction loop can be prevented.
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olution blocks (RB’s) of the current and reference frames for motion estimation using the
proposed wavelet-based multiresolution UCBDS algorithm. The motion vector field of the
corresponding parent subband is used to initialize the motion search of the current subband,
and the difference between these motion fields is eventually entropy-encoded. Using the esti-
mated motion field, motion compensation is then performed to determine the predicted RB,
which is subtracted from the current input RB to produce the prediction residue RB. The
prediction residue RB is then encoded using either the proposed recursive direct splitting

strategy or the recursive overlay mapping strategy, as expounded in subsection 5.3.2.

As explained, multiple coding layers will be performed to generate the layer blocks
that enable bit rate scalability. At a higher level, all layer blocks for the current frame
are generated until a certain target frame budget is reached, and these blocks are grouped
into a frame block before the next frame is processed. The distinct frame blocks clearly
show how the decoder can easily scale for different frame rates by simply discarding later
frame blocks. The resulting compressed prediction residue is finally combined with the
corresponding encoded motion vector field, which will collectively constitute the resolution
block in the first layer block, as illustrated in Figure 3.3. Subsequent processing of the next
resolution scale will generate the other resolution blocks that will enable spatial resolution
scaling. For coding efficiency, motion compensation of the chrominance channels is carried
out using the scaled version of the corresponding motion fields of the luminance channel.
Since the chrominance bit stream segments are embedded into distinct bit stream segments,
color video scalability can also be easily supported. In particular, it is noted that the
reference rate control (RRC) unit will “lock” the reference RB that is stored in a buffer for
MEMC of a future inter-coded frame according to the temporal hierarchy structure depicted
in Figure 3.2. As will be seen later, the same “locking” mechanism is also employed at the
decoder to ensure synchronization of the reference RB with the encoder and hence secure

the prediction loop critical for supporting bit rate scalability.



CHAPTER 5. MULTI-SCALABLE VIDEO COMPRESSION PLATFORM 141

5.4 Multi-scalable Video Decoder

This section presents the corresponding scalable video decoder, which inputs appropriate
resolution blocks from a compressed bit stream, decodes the selected subsets of the bit
stream, and then outputs the reconstructed video frames. Both intra-frame and inter-
frame scalable decoding algorithms are explained in the next two subsections with the help
of some pseudocode. This is followed by some examples to illustrate the various possible
combinations of supported video scaling parameters, and also to illuminate the degree and

granularity of supported video scalability.

The decoding algorithms are essentially the reverse operation of the encoding coun-
terpart which was described in subsection 5.3.2. Based on a given scalable video decoding
specifications, the decoder will either process or discard (parse?) each coding block in order
to reconstruct the required frame rate, spatial resolution, bit rate, and color depth of the
scalable video. The pseudocode in Figure 5.12 illustrate the scalable video decoding pro-
cess, given the scalable compressed bit stream and the decoding specifications. Each video
frame is processed according to the chosen decoding frame rate, which in turn determines
the required temporal layers from the temporal hierarchy structure in Figure 3.2. The con-
ditional switch, if (current frame is required), ensures that only the required frame
blocks (according to the decoding specifications) are decoded. Otherwise, the blocks are
discarded via ParseFrameBlock(). As a result, frame rate scalability can be achieved by
selective decoding of the frame blocks in the same compressed bit stream. For each required
frame block in the input bit stream, DetermineCodingMode () decides if the current frame
is to be decoded using intra-frame or inter-frame coding mode, which will be explained
in the following two subsections. For each coding mode, the reference frame is generated
while adhering to the same reference rate locking value that was used at the encoder. The
reference frame is then used for motion compensation of a future inter-frame decoded video

frame. The decoded current video frame is finally reconstructed by applying the inverse

3In the case of scalable video distribution over layered communication channels (such as via the MBONE
multicast networks), the decoder would not have subscribed to the channels that deliver those resolution
blocks irrelevant to the given decoding specifications. Hence, the decoder merely processes all the received

resolution blocks to recover the scalable video.
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multiwavelet transform before it is being stored to a file or rendered for display.

DecodeScalableVideo( ) {
while(current_frame <= target_last_frame) {
if (current frame is required) {
DetermineCodingMode( );
if (CodingMode == INTRA) {
DecodeIntraFrame( );
StoreReferenceFrame( );
ReconstructCurrentFrame( );
}
else if (CodingMode == INTER) {
DetermineReferenceFrame( );
DecodeInterFrame( );
MotionCompensateFrame( ) ;
StoreReferenceFrame( ) ;
ReconstructCurrentFrame( );
}
} else ParseFrameBlock( );

} /* decode next frame */

Figure 5.12: Pseudocode for decoding a scalable video bit stream with a given scalable
decoding specification. Each frame is processed appropriately, if required, using either an
intra-frame or inter-frame decoding mode.

5.4.1 Intra-Frame Scalable Decoding Algorithms

Figure 5.13 presents the pseudocode for decoding an intra-coded frame. In a manner similar
to the encoder, the decoding algorithms iterate through one coding layer at a time until a
certain target bit rate is reached. This allows bit rate scalability at the decoder, where each
additional coding layer further improves the quality of the reconstructed video regardless
of the other video scaling parameters. Within each coding layer, the segmentation phase

(either via recursive direct splitting strategy or recursive overlap mapping strategy) is first
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performed and then followed by the refinement phase. In each phase, all required resolution
blocks are decoded from the lowest resolution scale to the highest scale, and the luminance

channel is processed before the chrominance channels.

It is also worth noting how both spatial resolution scalability and color scalability are
achieved at the decoder by means of the if (current resolution block is required)
and if (color video is required) conditional switches, respectively. All the resolution
blocks and color blocks that are irrelevant to the given scalable decoding specifications are
discarded by calling ParseResolutionBlock() and ParseAllColorBlocks () in both the
segmentation and refinement phases of each coding layer. For each block that is discarded,
the corresponding decoding bit budget for that block is used to reconstruct other required
blocks in subsequent coding layers. As a result, it is possible to achieve better video quality
at the same decoding bit rate when the spatial resolution and/or color depth is scaled down.
Otherwise, the effective decoding bit rate can be reduced in exchange for a lower spatial

resolution and/or color depth of the video.

The following two examples will revisit the recursive direct splitting and recursive
overlap mapping techniques but doing so from the decoder viewpoint. Here, an input bit
stream corresponding to a particular segment is entropy decoded, and the recover symbols
are used to reconstruct the coefficients of the segment during the segmentation phase of the

current coding layer.

Example 5.3. Decoding via Recursive Direct Splitting Technique

In this example, the goal is to explain how the 4 x 4 segment in Figure 5.5 can be recovered

from the decoded symbol stream
(17 170a =+, laOaOa -+, Oa 17 =+, 07 T 0)

It is noted that the three coefficients with the circles have already been significant prior to
decoding at the current coding layer. The objective of the current segmentation phase now
is to recover the positions and signs of all exclusive coefficients at the current coding layer.
To begin, the decoder receives the first symbol 1, which indicates that the 4 x 4 segment

comprises at least one exclusive significant coefficient. Hence, the segment Sg’z [m,n,4,4] is
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DecodeOneColorFrame( ) {
c = 0; /% initialize current decoding layer */
while(current_decoded_bits < target_frame_bits) {
for(phase € {Segmentation, Refinement}) {
if (current resolution block is required) {
DepacketizeAndDecodeHeader( ) ;
DecodePhase(LS}ﬁp,ngﬁp,ngﬁp,ngﬁp,phase);
DecodePhase(\fS;EQO,}IS;%QO,I)SQEQO, phase) ;
} else ParseResolutionBlock( );
for(each remaining resolution scale, /=L—-1,...,1) {
if (current resolution block is required) {
DepacketizeAndDecodeHeader( ) ;
DecodePhase(\éﬁgﬁp,Ilggﬁﬁ,[éﬁ%go,phase);
} else ParseResolutionBlock( ); 1}
if(color video is required) {
if (current resolution block is required) {
DepacketizeAndDecodeHeader( ) ;
DecodePhase(I&g?ff,I&X?ff, phase) ;
DecodePhase (L{ )}y, LYi LEsel Lied et pV0e0 phage) ;
} else ParseResolutionBlock( );
for(each remaining resolution scale, {=L—-2,...,1) {
if (current resolution is required) {
DepacketizeAndDecodeHeader( ) ;
DecodePhase (V%g’c’o, VE}Q’C’O, Hgﬁ’c’o, HE}Q’C’O, Dgﬁ’c’o, D%{)’C’O, phase);
} else ParseResolutionBlock( ); 1}
} else ParseAllColorBlocks( );
} /* next decoding phase */ c++;

} } /* next decoding layer */

Figure 5.13: Pseudocode for decoding a color frame from a highly scalable compressed
bit stream consisting of resolution blocks with appropriate headers. Each block is either
processed or discarded based on a given scalable video decoding specification.
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split via = into four 2 x 2 subsegments: SZ; [m,n,2,2], SZ; [m+2,n,2,2], Slec [m,n+2,2,2],
and SZ; [m +2,n +2,2,2]. The subsegment = is first processed in a depth-first manner.
The decoder receives the second symbol 1, which indicates the presence of at least one
exclusive significant coefficient in subsegment Z(;). Since the dimensions of subsegment
E(1) have reached min dim = 2, the signs of all exclusive significant coefficients will be
decoded. The decoder knows, at this point, that there are only two previously insignificant
coefficients in subsegment =}y (as the third and fourth coefficients are already significant
in previous coding layers). This guides the decoder to read in only the next two symbols,
0 and +, which will assign the first coefficient as insignificant and the second coefficient as
positive significant. In other words, the reconstruction value of the first coefficient is still

zero, while the second coefficient has a reconstruction value of —i—%(Tc + Tetr).

The decoder continues to recover the second subsegment S;:,t[m + 2,n,2,2], which
fourth coefficient is already significant in a previous coding layer. The symbol 1 also
indicates the presence of at least one exclusive significant coefficient. Since the dimensions
of the subsegment have reached min dim = 2, it is not further split. Instead, the decoder
reads in the next three symbols, 0,0, and +, to assign the first and second coefficients
of the subsegment as insignificant, while the third coefficient as positive significant with a
reconstruction value of —i—%(Tc + T¢11). Now, the third subsegment SZ; [m,n +2,2,2] is
processed. The next symbol 0 indicates exclusive insignificance of the entire subsegment;
hence no further processing is required. The fourth subsegment SZ; [m+2,n+2,2,2] has a
decoded symbol 1, which prompts the decoder to read in the next four symbols for all the
four coefficients that are still insignificant prior to the current coding layer. The symbols,
+,0,—, and 0, assign the the reconstruction values of ~|—%(TC + Teyq) and —%(Tc + Tetg)
to the first and third coefficients, respectively, while the second and fourth coefficients will

still be zero.

Example 5.4. Decoding via Recursive Querlay Mapping Technique

In this example, the goal is to explain how the 8 x 8 child segment in Figure 5.7 can be
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recovered from the decoded symbol stream
(17 170707 1707 1703 ) +a +a 13 B 030303 13 13 1307 ) 07 B 03 17 +a +a 07 +a 07 B 0)

based on the contextual information from its parent segment in Figure 5.5. At the beginning
of decoding the 8 x 8 segment in the current coding layer, the decoder already has the
knowledge about the positions and significance of the six coefficients which were recovered in
previous coding layers. It also knows the overlaid significance maps since the corresponding

parent segment for the current coding layer has already been processed.

To begin, the decoder will first read in two symbols for both the significant and in-
significant overlay maps. The symbols, 1 and 1, imply that there is at least one exclusive
significant coefficient in each of these maps. Hence, both overlay maps will need to be
processed further by splitting the 8 x 8 segment SZ:,(; [m,n,8,8] into four subsegments using
the operator Z. The first subsegment, SZ:; [m,n,4,4], contains both significant and insignif-
icant overlay maps. This prompts the decoder to read in the next two symbols, 0 and
0, which indicate that the entire subsegment, Szllc[m,n,él,él], is homogeneously exclusive
insignificant. A homogeneous segment needs not to be processed further in the current
coding layer.

The decoder moves on to decode the second subsegment, Sz}c[m + 4,n,4,4]. Since
it also has both significant and insignificant overlay maps, two symbols are read in. The
first symbol 1 indicates the presence of at least one exclusive significant coefficient in the
significant overlay mapped region. The second symbol O implies that the insignificant
overlay mapped region is homogeneously exclusive insignificant and this region requires no
further processing in the current coding layer. The subsegment is further split into four
smaller subsegments since it is heterogeneous and contains at least one exclusive significant
coefficient. The first and second subsegments, SZZ [m+4,n,2,2] and SZ:,% [m+6,n,2,2], are
ignored but the third and fourth subsegments, SZ’Z [m+4,n+2,2,2] and SZZ [m+6,n+2,2,2],
will require further processing. Adopting the same depth-first decoding, all coefficients in
the third subsegment are processed before those in the fourth subsegment. Since the third

subsegment comprises only the significant overlay map, the decoder will read in one new
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symbol. The symbol 1 here prompts the decoder to read in four more symbols, 0, —, +, and
+, because the subsegment has reached min_dim = 2. This means that the first coefficient of
the subsegment is still insignificant, while the other three coefficients have a reconstruction
value of %(Tc + T.y;) but with a —, +, and + sign, respectively. The fourth subsegment,
S;f:z [m+6,n42,2,2], also has only the significant overlay map, which guides the decoder to
read in only one next symbol 1. As the first coefficient was already significant, the decoder

will read in only three other symbols, —, 0, and 0.

The third subsegment, SZ’i [m,n + 4,4,4], is processed next. As it consists of only
the insignificant overlay map, the decoder reads in only one new symbol 0. This implies
a homogeneously exclusive insignificant subsegment that requires no further processing in

the current coding layer.

Finally, the decoder processes the fourth subsegment, SZ’}c [m+4,n+4,4, 4] by reading in
two symbols, 1 and 1. Hence both the significant and insignificant overlay mapped regions
will require further processing. The subsegment is now split into four smaller subsegments.
The first subsegment, SZ’Z [m+4,n+4,2,2], has a symbol 1, which prompts the decoder to
read in four new symbols, 0, —, 0, and —. The second subsegment, SZ; [m+6,n+4,2,2] has
a symbol 0, which implies that it is homogeneously exclusive insignificant (hence, no more
symbols are read in for this subsegment). The third subsegment, SZZ[m +4,n+6,2,2],
also has a symbol 1, which guides the decoder to read in three other symbols, 4+, 4, and 0
as the fourth coefficient has already been significant in a previous coding layer. Finally the
decoder implicitly knows that the fourth subsegment, SZ’Z [m 4+ 6,n + 6,2,2], must have at
least one exclusive significant coefficient because the second subsegment is homogeneously

exclusive insignificant. The decoder will then read in four new symbols, 4,0, —, and 0 for

the four previously insignificant coefficients, respectively.

5.4.2 Inter-Frame Scalable Decoding Algorithms

Referring to the INTER coding mode portion of Figure 5.12, the first step in inter-frame
video decoding is to determine the reference frame for motion compensation of the cur-

rent frame of interest. The subroutine DetermineReferenceFrame () employs the tempo-
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ral hierarchy structure in Figure 3.2 to determine and retrieve the reference frame from
the buffer; this reference frame is then used to perform DecodeInterFrame (). The inter-
frame decoding algorithms are almost identical to the pseudocode in Figure 5.13 except
that the motion vector field corresponding to each required resolution scale is decoded
as well during the first coding layer. The current predicted frame is then recovered via
MotionCompensateFrame () by motion compensating the previous reference frame with the
decoded motion vector fields in the multiwavelet domain. A predetermined portion of the
current prediction error frame that was reconstructed via DecodeInterFrame() is then
added to the current predicted frame. The application of the same “reference frame lock-
ing” mechanism generates a new reference frame, which is stored in the buffer via the
subroutine StoreReferenceFrame (). Depending on the target bit budget for the current
frame, DecodeInterFrame () will continue to reconstruct more coding layers of the current
prediction error frame so that ReconstructCurrentFrame () can recover the current video
frame with higher fidelity.

The block diagram in Figure 5.14 illustrates the processing units and data flows while
performing scalable video decoding of one video frame using an inter-frame coding mode.
As the scalable bit stream is separated into distinct resolution blocks (RB), the switching
units SW can selectively process or discard certain RB’s depending on the chosen scalable
decoding specifications. When SW is turned on, the corresponding RB will be motion
compensated via the MEMC module, given the reference RB that is retrieved from the
buffer. All the required RB’s are decoded and multiplexed (via the MUX operator) in

order to reconstruct the current video frame.

The detailed processing of each MEMC module is depicted in Figure 5.15. The bit
stream of a particular resolution block is first depacketized to retrieve the motion vector
field and the compressed prediction frame error of the current frame. For each RB that
has a parent, the corresponding motion vector field of the parent is also used to motion
compensate the current reference RB in order to reproduce the current predicted RB. In
a separate processing thread, the decoder continues to reconstruct the prediction frame

error until a given bit budget for the frame is reached. The current RB is recovered by
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Figure 5.14: Block diagram for decoding an inter-coded video frame using the proposed
wavelet-based multiresolution UCBDS algorithm. It also shows how spatial resolution and

bit rate scaling can be controlled during the decoding process.
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combining the current predicted RB with the decoded prediction frame error. It is again
emphasized that the reference rate control (RRC) unit will “lock” a predetermined portion
of the prediction frame error, which is added to the current predicted RB to generate a new

reference RB that is stored in the buffer for MEMC of a future inter-coded RB.

5.4.3 Examples of Scalable Decoding Specifications

This subsection aims to demonstrate the extent and granularity of the supported multi-
scalable compressed video bit stream. In particular, we show how different video scaling
parameters can be chosen simultaneously from the same scalable bit stream. Consider an

input video sequence:
e Frame rate: 30 fps
e Color depth: 24 bits per pixel
e Spatial resolution: 640 x 480 pixels

which is encoded using the proposed multi-scalable video coding framework with the fol-

lowing encoding specifications:

Temporal scalability: 4 temporal layers supported

Color scalability: Enabled

Encoded bit budget: 1 Mbps

Base reference frame “lock”: 10% of encoded bit budget

Number of multiwavelet decomposition: 4 octave levels

Spatial resolution scalability: 3 resolution scales supported.

The total number of supported temporal layers is solely dependent on the choice of
the proposed temporal hierarchy structure in Figure 3.2 (with 4 temporal layers). A dif-
ferent choice of the temporal hierarchy structure will determine the maximum allowable

frame rate scalability available to the decoder. Color scalability is enabled by encoding
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Figure 5.15: Block diagram for decoding a resolution block (or a subband segment) using
the proposed wavelet-based multiresolution UCBDS algorithm. It also illustrates how the
proposed reference frame “locking” mechanism is employed to secure the prediction loop.
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Specs. | Bit Rate | Frame Rate | Color | Spatial size
(kbps) (fps) (Y/N) (pixels)
(a) 650 30 Y 640 x 480
(b) 300 30 Y 320 x 240
(c) 300 15 N 320 x 240
(d) 120 15 Y 160 x 120
(e) 80 7.5 Y 320 x 240
(f) 150 7.5 Y 320 x 240
(g) 34 3.75 N 160 x 120

Table 5.3: Examples of possible video decoding specifications that can be achieved from a
common mulit-scalable compressed video bit stream.

the chrominance components of the input video into distinct color blocks with appropriate
headers. The decoder can subsequently discard all chrominance blocks in order to recon-
struct a grayscale video. The target encoded bit rate is set to 1 Mbps; in fact, the target
bit budget can be any arbitrary value since it is independent of the other scalable encod-
ing specifications. In order to enforce the “reference frame locking” mechanism, a fixed
predetermined target is set (in this case, it is at 10% or 100 kbps). The same “locking”
mechanism is then employed at the decoder to secure the motion prediction loop. Also,
we have chosen to perform four levels of octave multiwavelet transform using the proposed
initialization framework. As a consequence, a maximum of three possible spatial resolution
scalability can be supported. In this example, we have chosen to provide all the three

spatial resolution scaling for the decoder.

Using the above scalable encoding specifications, Table 5.3 shows some examples of a
wide range of possible video decoding specifications that can be achieved from the same
compressed bit stream. As explained in subsection 3.4.1, the “locking” mechanism imposes
a minimum decoding bit rate since the base reference layer must be satisfied to guarantee
synchronization of the reference frames between the encoder and decoder. In this example,

the lowest possible decoded bit rate is at 100 kbps if full frame rate, color, and spatial
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resolution are required. However, when one or more of these video scaling parameters are
scaled down, lower decoding bit rates are possible such as those with decoding specifications
(e) and (g). In addition to the above scalability in terms of bit rate, frame rate, color,
and spatial resolution, decoding complexity was also clearly achieved with a lower decoding
specification. This was evident from the fact that more frames could be decoded per second

when the bit rate, color and/or spatial resolution was reduced.

It is also worth noting that any of the above decoded bit streams is a multi-scalable
bit stream itself; however, the maximum degree of scalability for the various video scaling
parameters has been reduced accordingly. For example, the decoded video with specification
(b) can be further re-scaled to obtain another version of the same video, such as that with a
decoding specification (d), (e), (f) or (g). However, the decoding specification (c) cannot be
achieved from (b) since there is simply insufficient information to attain the same maximum

bit rate (i.e. 300 kbps) by scaling down the frame rate and color.

5.5 Simulation Results and Promising Video Applications

The section presents some simulation results of the proposed multi-scalable video compres-
sion framework. Although the current emphasis of the dissertation has not been on opti-
mizing the encoding and decoding algorithms in terms of processing speed and compression
efficiency, the simulations here will demonstrate the various supported combination and
granularity of video scalability and present an appreciation of the possible trade-offs among
the disparate video scaling parameters in order to meet specific decoding requirements or
limitations. This is followed by a preview of some interesting applications of scalable video
such as multi-party video communication in heterogenous environments. In particular, we
will illuminate with some snapshots of a layered live multicasting project that exploits the

multi-scalable features of the proposed video compression platform.
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5.5.1 Simulation Results of Multi-Scalable Video Codec

In this investigation, the standard Carphone video sequence is used to illustrate the flexibil-
ity and granularity of the proposed multi-scalable bit stream. This video sequence consists
of a foreground object (a head-and-shoulder person who moves his upper body while speak-
ing) and a constantly moving background (the exterior street view from a moving car). The

following encoding specifications were used:

e Frame rate: 10 fps

e Color depth: 24 bits per pixel

e Spatial resolution: Full QCIF (176 x 144 pixels)

e Temporal scalability: 4 temporal layers supported

e Color scalability: Enabled

e Encoded bit budget: 1 Mbps

e Base reference frame “lock”: 5% of encoded bit budget
e Number of multiwavelet decomposition: 3 octave levels

e Spatial resolution scalability: 2 resolution scales supported.

Figure 5.16 displays six selected original frames (namely, the 16", 80", 176", 240", 288",
and 368" frames) from the Carphone sequence.

The same multi-scalable compressed video bit stream generated was then used to

reconstruct the following five different versions of the video:
(a) 30 kbps, 5 fps, full QCIF, and grayscale video;
(b) 30 kbps, 5 fps, quarter QCIF, and color video;
(c) 15 kbps, 1.25 fps, quarter QCIF, and grayscale video;

(d) 100 kbps, 5 fps, full QCIF, and grayscale video;
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(e) 200 kbps, 10 fps, full QCIF, and color video.

Figures 5.17, 5.18, 5.19, 5.20, and 5.21, respectively, portray the same set of six video
frames in Figure 5.16 but they were reconstructed using each of the above five decoding
specifications. Clearly, many other combinations of the video scaling parameters can be

achieved with a target bit rate of up to 1 Mbps.

From Figure 5.17, we observed some ringing effects when decoding at 30 kbps with
only a grayscale video. Using the same target bit rate, we could alternatively scale down the
spatial resolution but support color video at the same frame rate (as shown in Figure 5.18).
In order to illustrate the flexibility of the multi-scalable bit stream in supporting very low
bit rate applications simultaneously, Figure 5.19 depicts the reconstructed sub-QCIF video
frames at only 15 kbps but with a reduced frame rate of 1.25 fps. This decoding specification
can become useful for video playback on a mobile PDA over wireless connection. On the
other hand, we could also decode at a higher target bit rate of 100 kbps or 200 kbps at the
expense of higher computation complexity. As expected, the video quality in Figure 5.20
is clearly more superior than that in Figure 5.17 when the decoded bit rate was increased
with all the other video scaling parameters unchanged. Figure 5.21 further increased the
bit rate to recover a high-quality video with full color, full spatial resolution, and full frame
rate.

In addition to subjective observations, an objective measure of the PSNR values of
the reconstructed video frames are also provided in Figures 5.17 — 5.21. Table 5.4 presents
a summary of the average PSNR values of the Carphone video sequence over 380 frames.
For the sub-QCIF decoded videos, their corresponding PSNR values are measured against
a downsampled version (using bilinear interpolation) of the original QCIF video. It is
observed that the PSNR values correspond very well with the subjective video quality. For
example, there is an average improvement of 1.29 dB by increasing the bit rate from 30
kbps to 100 kbps while leaving the other decoding specifications unchanged. At 200 kbps,
the average PSNR value of the luminance component has further increased considerably;

this clearly supports the observed improvements in the decoded video quality.
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Figure 5.16: Original Carphone video sequence encoded with an encoding specification of
1 Mbps, 10 fps, full QCIF, color, and 5% for base reference byte: (a) Frame 16, (b) Frame
80, (c) Frame 176, (d) Frame 240, (e) Frame 288, and (f) Frame 368.
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Figure 5.17: Decoded frames from Carphone video sequence with a decoding specification
of 30 kbps, 5 fps, full QCIF, and grayscale: (a) Frame 16 (Y: 23.84 dB), (b) Frame 80 (Y:
24.17 dB), (c) Frame 176 (Y: 23.32 dB), (d) Frame 240 (Y: 22.25 dB), (e) Frame 288 (Y:
20.72), and (f) Frame 368 (Y: 20.03 dB).
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Figure 5.18: Decoded frames from Carphone video sequence with a decoding specification
of 30 kbps, 5 fps, quarter QCIF, and color: (a) Frame 16 (Y: 27.48 dB; U: 30.15 dB; V:
28.28 dB), (b) Frame 80 (Y: 26.12 dB; U: 27.85 dB; V: 27.05 dB), (c¢) Frame 176 (Y: 24.11
dB; U: 25.91 dB; V: 24.33 dB), (d) Frame 240 (Y: 22.79 dB; U: 23.47 dB; V: 23.26 dB), (e)
Frame 288 (Y: 21.16 dB; U: 21.95 dB; V: 22.35 dB), and (f) Frame 368 (Y: 21.47 dB; U:
22.93 dB; V: 22.48 dB).



CHAPTER 5. MULTI-SCALABLE VIDEO COMPRESSION PLATFORM 159

Figure 5.19: Decoded frames from Carphone video sequence with a decoding specification
of 15 kbps, 1.25 fps, quarter QCIF, and grayscale: (a) Frame 16 (Y: 23.38 dB), (b) Frame
80 (Y: 20.21 dB), (c) Frame 176 (Y: 20.56 dB), (d) Frame 240 (Y: 21.23 dB), (e) Frame
288 (Y: 18.17 dB), and (f) Frame 368 (Y: 21.61 dB).
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Figure 5.20: Decoded frames from Carphone video sequence with a decoding specification
of 100 kbps, 5 fps, full QCIF, and grayscale: (a) Frame 16 (Y: 24.61 dB), (b) Frame 80 (Y:
25.08 dB), (c) Frame 176 (Y: 24.10 dB), (d) Frame 240 (Y: 22.88 dB), (e) Frame 288 (Y:
21.32 dB), and (f) Frame 368 (Y: 22.05 dB).
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Figure 5.21: Decoded frames from Carphone video sequence with a decoding specification
of 200 kbps, 10 fps, full QCIF, and color: (a) Frame 16 (Y: 33.56 dB; U: 36.48 dB; V: 34.38
dB) , (b) Frame 80 (Y: 32.52 dB; U: 36.62 dB; V: 33.65 dB), (c) Frame 176 (Y: 31.97 dB;
U: 35.61 dB; V: 32.92 dB), (d) Frame 240 (Y: 29.48 dB; U: 33.30 dB; V: 30.21 dB), (e)
Frame 288 (Y: 30.01 dB; U: 32.54 dB; V: 30.55 dB), and (f) Frame 368 (Y: 32.84 dB; U:
35.75 dB; V: 33.55 dB).
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Bit Rate | Frame Rate | Color | Spatial size | Average PSNR
(kbps) | (bs) | (Y/N) | (pixels) (dB)
Y 23.77
30 5 N 176 x 144 | U -
vV _
Y 22.30
30 5 Y 88 x 72 U 25.41
\Y% 23.92
Y 20.91
15 1.25 N 88 x 72 U -
vV _
Y 25.06
100 5 N 176 x 144 | U -
vV _
Y 31.78
200 10 Y 176 x 144 | U 35.03
\Y% 32.55

Table 5.4: Average PSNR results (Carphone sequence over 380 frames) for different video
decoding specifications.

5.5.2 Some Promising Applications of Multi-scalable Video Codec

Many useful video applications that cater to heterogeneous multiparty and diverse stream-
ing network environments can be realized using highly scalable and efficient video com-
pression. As expounded in Section 3.2, video scalability can be achieved in three different
scenarios: at the encoder end, during video delivery over the networks, or at the decoder end.
In this subsection, we present a brief introduction to two real-world video communication
systems that have been developed using an earlier version of the proposed multi-scalable

video compression architecture:

(a) Scalable video multicasting to heterogeneous receivers over diverse net-

works:* This project aims to exploit the highly scalable video compression framework

4This project, codenamed See WAVE, is a joint-project between the Department of Electrical Engineering
and the Center for Wavelets, Approximation, and Information Processing (CWAIP) under the Academic
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for scalable video delivery to disparate receivers over the MBONE multicast network.
In doing so, the scalable encoder captures a live feed and compresses it into different
resolution layers of the video bit stream; each layer is then assigned to a separate
multicast channel and streamed via RTP over UDP. A receiver at the other end will
select and subscribe to only those multicast channels that are required according to
the preferred scalable decoding specifications. A session manager maintains a list of
all available video servers and the list of multicast channels carrying the live or pre-
encoded video streams. For clients or networks that are not supporting multicasting,
a proxy gateway is employed to receive the multicast streams, buffer and re-package
them before relaying the required version of the video in a unicast manner. Both
high-performance desktop computers as well as wireless-connected PDAs have been
used as clients in this project. More information about this project can be found at

http://ccn.ece.nus.edu.sg/seewave/ (and also in [31]).

(b) Client-driven video on-demand (or retrieval) system: This project aims to
develop a flexible video-on-demand system that archives the video assets in a scalable
compressed video format. An indexing methodology is used to reference the various
resolution layers of the scalable bit stream so that each layer can be quickly accessed
for streaming from the video server. When a client requests for a particular video,
information about the degree of scalability supported by that video is first retrieved
from the server. Based on this information, the client can select a preferred set of
scalable decoding specifications and then make the appropriate request. The video
server will retrieve only the pertinent layers of that video and stream them to the
requesting client in a unicast manner via TCP /IP or UDP/IP. In this manner, efficient
bandwidth utilization can be achieved; moreover, the video server needs to store only

one scalable version of each video in the archive in order to cater to disparate clients.

The pictures below illustrates some snapshots of the SeeWAVE project. Figure 5.22

shows a high-performance video server with a camera that captures the live source video.

Research Fund, NUS. The author is grateful to Dr. Tham Chen Khong and team for the permission to

include some snapshots of the project into the dissertation.
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The session information and the preview video capture window are displayed on the mon-
itor, while the handheld unicast client is receiving the live video via a wireless LAN card.
Figure 5.23 depicts two unicast PDA clients which receive the video stream using a wireless
mobile phone modem and infra-red connection. Figure 5.24 provides a closer look into the
scalable video client interfaces for a handheld PDA using the Windows CE platform. It
shows the interfaces for the session manager and the scalable video selection menu. De-
pending on the selected decoding specifications, the clients can receive different unicast

video streams with disparate spatial, frame rate, bit rate, and color resolutions.

5.6 Conclusion

The chapter introduced a new framework for multi-scalable video compression using the
discrete multiwavelet transform and multiresolution motion estimation and compensation
in the wavelet domain. Detailed algorithms development for both the scalable encoder and
decoder was expounded with appropriate pseudocode and examples. In particular, we have
also introduced two new algorithms for efficient encoding of the multiwavelet coefficients: (i)
Recursive direct splitting strategy, which exploits the spatial relationship of the coefficients
within a local neighborhood; and (ii) Recursive overlay mapping strategy, which further
exploits the inter-subband relationship of the parent and children coefficients. In the case
of intra-frame coding, the subband coefficients are encoded using either one of the above
recursive coding strategies. For inter-frame coding, however, the two strategies are used to
encode the prediction frame (subband) error coefficients that was obtained after performing
wavelet-based motion compensation.

We also explained how multiresolution motion estimation and compensation were per-
formed on each resolution scale so that the resulting bit stream supports spatial resolution
scalability without compromising the prediction loop. The encoding and decoding algo-
rithms clearly explained how different resolution blocks can be generated, organized in the
bit stream, and then decoded (or discarded) accordingly in order to achieve a given set of

scalable decoding specifications. Examples on various combinations of supported granu-
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Figure 5.22: Project SeeWAVE: Video server with a camera capturing the live source feed,
and a wireless unicast client receiving the live stream.
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(a) (b)

Figure 5.23: Project SeeWAVE: Two wireless-connected PDA clients with (a) receiving a
full-QCIF grayscale live video, and (b) receiving a quarter-QCIF grayscale live video.
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Figure 5.24: Project SeeWAVE: Interfaces of PDA clients with Windows CE operating
system. (a) Interface for specifying the session properties of live source feed; (b) Interface
for selecting the scalable decoding specifications; (c) Client receiving a full-QCIF color live
video; and (d) Client receiving a quarter-QCIF grayscale live video.
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larity of video scaling parameters were presented, together with a visual representation of
the reconstructed video frames. Finally, we demonstrated two actual video communication
systems that were developed using the proposed multi-scalable video compression platform.
These projects validated the flexibility and usefulness of scalable video compression to si-
multaneously cater for client diversity and network heterogeneity using only one scalable

video bit stream.



Chapter 6

Conclusions and Future Research

Directions

“There is nothing more dreadful than the habit of doubt. Doubt separates
people. It is a poison that disintegrates friendships and breaks up pleasant
relations. It is a thorn that irritates and hurts; it is a sword that kills.”

Siddhartha Gautama Buddha (563 - 483 B.C.)

Conclusions

In this dissertation, we have focused on the research and application development of the

following three core areas:

e Multiwavelets: We first established the concept of an equivalent scalar filter bank

system for a given multiwavelet system. This allowed us to gain new insights into
the input-output relationship of discrete-time multiwavelet transform from the per-
spective of the input-output relationship a set of equivalent scaler wavelet system.
This subsequently led to the notion of “good multifilter property (GMP)” which es-
sentially characterizes the property of the corresponding frequency responses of the
equivalent scalar wavelets. Using GMP as a new tool, we showed step-by-step proce-

dures to construct multiwavelet filters with desirable properties useful for image and
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video compression applications. We further introduced two previously unpublished
classes of orthogonal and biorthogonal multiwavelets having one symmetric and one
antisymmetric wavelet basis; these multiwavelets also possess a GMP order of at least
one. We then proposed a generalized framework for multiwavelet initialization (or
pre-filtering), which is key for performing effective discrete multiwavelet decomposi-
tion and reconstruction algorithms. The pre-filtering framework does not only require
very low processing overhead but it is also robust enough to work well with any mul-
tiwavelets. Experimental results in image and video compression provided conclusive
evidence that the proposed classes of multiwavelets with GMPs could consistently
outperform other multiwavelets and popular scalar wavelets with lower computation

complexity.

e Motion Estimation and Compensation (MEMC): In this area, we introduced
a novel block matching algorithm called “unrestricted center-biased diamond search”
(UCBDS), which capitalizes on the observation that most motion vector distribu-
tions are centrally biased toward the zero motion vector. Extensive theoretical and
experimental simulations have demonstrated the robustness, accuracy, and efficiency
of UCBDS. A speed performance improvement of up to 31% could be achieved over
some other fast block matching methods such as the four-step search, and over 13
times faster than the full-search method. The monogrid UCBDS was then extended
to a multiresolution UCBDS framework with the goal of supporting spatial resolution
video scalability. Here, MEMC was performed on the multiwavelet subbands instead
of in the image domain. This approach enjoys many benefits such as lower compu-
tation complexity, no blocking artifacts, and multiscale representation of the motion
vector field. We also discussed the inherent problem of non-translational invariance of
critically-sampled wavelet transform, and showed how the proposed framework could
secure the prediction loop and prevent a prediction drift, which would otherwise ren-

der multi-scalable video compression impossible.
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e Multi-scalable video compression: Eight primary video scaling parameters (bit
rate, distortion, spatial resolution, temporal resolution, alphabet, hardware, complex-
ity, and object scalability) were discussed and related to scenarios on how such video
scalability features can be useful to simultaneously support heterogeneous client and
network requirements. In particular, we illumminated the potential barriers to sup-
porting bit rate, frame rate, and spatial resolution video scalability. A “reference
frame locking” mechanism, a secured prediction loop for multiresolution motion com-
pensation, and a temporal hierarchy structure were proposed, and later showed how
these solutions can be combined to provide simultaneous video scalability. Two new
coding algorithms (namely, the recursive direct splitting, and the recursive overlay
mapping strategies) for scalable intra- and inter-frame encoding and decoding were
explicated with complete pseudocode, block diagrams, and examples. We also pre-
sented an insight into how the multi-scalable compressed video bit stream is comprised
of an embedded hierarchy of frame blocks, layer blocks, resolution blocks, and color
blocks, which subsequently allows the scalable decoder to select from a wide range
of decoding specifications with fine granularity. Finally, we discussed two real-world
video communication applications: Scalable multicast video delivery over the Internet,

and a scalable client-driven video-on-demand system.

6.2 Suggested Future Research Directions

The proposed multi-scalable video compression architecture opens up a new paradigm for
many other advanced areas that warrant further research and application development.

The following list highlights a few suggestions for future extension to the current work:

e Optimum bit allocation: This is a challenging problem on how a given target
bit budget can be optimally allocated for intra and inter-coded frames based on the
semantics and motion content of a video sequence. Also, it remains an open issue
as to how a scalable decoder should distribute a given decoding bit budget when

performing spatial resolution and/or frame rate scaling. Optimum bit allocation in
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both constant bit rate (CBR) and variable bit rate (VBR) modes for a highly scalable
video compression platform remains an elusive problem. This area can contribute

directly to improving the compression efficiency by a sizeable margin.

e Video post-processing: Unlike blocking artifacts that are found in typical block-
based compression methods, wavelet compression suffers from ringing or mosquito
artifacts at high compression ratios. Research on how to suppress or minimize ringing
artifacts can contribute to significant improvement in perceptual video quality. We
have presented a simple and non-iterative approach for ringing suppression in [8];
however, more advanced techniques can be researched, either as a post-processing

step or an integrated mechanism during the decoding process.

e Video object scalability: Although the current multi-scalable video compression
framework supports various video scaling parameters, object-based scalability is still
not possible unless the objects within a video frame are segmented and encoded
separately. Research on multiwavelet transform and scalable encoding of arbitrarily
shaped objects and a framework that describes the composition of the objects can be

promising areas to support interactive video.

e Shift-invariant wavelet filters and wavelet-based MEMC: The area is war-
ranted due to the shift variance property of critically-sampled discrete (multi)wavelet
transform, which will negatively impact the performance of motion compensation in
the wavelet domain. More research can be focused on the construction of new multi-
wavelet filters with improved shift invariance properties. Research for more efficient

MEMC algorithms in the wavelet domain can also be promising.

e M-band multiwavelets The two classes of orthogonal and biorthogonal multi-
wavelets introduced in this dissertation consist of only two channels: lowpass and
highpass filtering. Extension to more than two bands may contribute to new results
in signal representation and energy compaction since there will be a lowpass and mul-
tiple bandpass filtering. Also, an M-band multiwavelet could possess a higher degree

of desirable filter properties for a given length of a compactly supported multifilter.
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Proofs

A.1 Proof of Theorem 2.1

Sufficient part: Suppose that the ay’s satisfy (2.43), then we have

HCY(z) = R(ag)D(z)R(a1) H D(2*)R(czg+1)- (A1)

bi11(z) bi2(z
Denote B(z) = u() ble) = Hfj;ll D(z)R(o9k+1). Expanding the right-hand

b21 (Z) 622 (Z)
side of (A.1), we have
\/ﬁHé(Z)N)(z) = (cosai —z 7 sinag)byi(22) + (—sinog — 271 cos oy )by (22),

\/ngN) (2) = (cosay+z tsinag)b(2?) + (—sinag + 2 ' cos ap )by (22).

Thus, we have Hé(z)N)(z) = HgN)(—z). This implies that the filter {hy };"; " satisfies (2.40).

Obviously, H®M)(z) is unitary on the circle |z| = 1. On the other hand, since the determi-
nant of B(z) equals A(z) := det(B(z)) = z V*1, and (BT (2?)) ! = Hé\f:_ll D(z ?)R(aop41) =

B(z2), we have

2
b22(2_2) = % = ZZ(N_l)bH(Z2) and blz(z_z) = — = —ZZ(N_I)bgl(ZZ).

Thus, HfZN)(z) = —z*4N+1H82N)(—z*1). Therefore, HN)(z) is the polyphase matrix of

a length-4N orthonormal filter bank which satisfies (2.40).
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Necessary part: If an orthonormal filter {hk}ig 0 ! satisfies (2.40), then from (2.37), its

polyphase matrix H(2N)(z) can be written as

(2N) (2N)
H(ZN)(Z): Hyy ' (2) Hyy  (2)

2N 2N
H(()o )(—Z) Hfo )(—Z)
In [41], Evangelista proved that such a matrix can be factorized as

N-1
H®)(2) = R(c) D(2)R(cr) [ D(*) Rlz 1),
k=1

where g = 7/4. Using the fact D(z?) = D(2)ID(z), we have

N—-1
HC®Y(z) = R(a)D(2)R(c1) || D(2)ID(2) R(ctes1).-
k=1

By comparing it with (2.38), we obtain R(ag;) = I. Thus we have ag, = 0 mod 2,

k=1,...,N —1. O

A.2 Proof of Proposition 2.3

We only need to prove that {H}:; " and {G}:Y ;" satisfy the PR conditions (2.10) and
(2.11). Fori € Z,

ON—1-2i - ON—1-2i R .
Y., H;Gp., = > Hp(—1)**" " Hon_1_p_2A)
=0 k=0

N-1-i 2N-1-2i ot a e
= kEO + . %: | H(-D)MHTAH vy
= =N—i

N—-1—¢ N—-1—¢

= Y Hp (-)"AHJy o+ Y Hoy 1o k(-1)"AH].
Using the assumption that H,AHZL, | ,. , are symmetric matrices forallk = 0,1,..., N—

1—1,:=0,1,...,N — 1, we have

2N—-1-22
Y HGfy =04, i€l (A.2)
k=0

It is easy to show that {Gk}ii[al given by (2.48) satisfies the PR condition (2.10). O
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Examples of Multifilters

For concise presentation, all the filter coefficients shown in the following examples should

be rescaled by a division with /2.

B.1 Parameterization of Length-4 SAOMF Family.

We will construct a length-4 orthonormal multiwavelet system starting from the Daubechies’
one-parameter length-4 orthonormal scalar wavelet with the lowpass sequence {hk}izo given
by

v(v—1) 1—v 1+v v(ir+1)

h = - = —— =  —--- :7‘
0 L e T 7 N R v2 41

This sequence is a scalar CQF, and the parameter v can be used for various filter design

purposes.

Applying Lemma 2.1 to {hy}3_, results in the following length-8 scalar CQF {b;}I_,:

b — (v—1)w+r1) b — —7(v—=1)(v+71) b — 1+v)(1+vr)

0 2(1+12) ! 201 +12)  ° 2(1 +12)

be — T(L+v)(1+vr) by — (1+v)(1-vr) b — —7(1+v)(1 —vr1)
3 20 +2) 21+12) " 20 +12)
b :(1/—1)(1/—7) :T(u—l)(l/—T)

6 20 +v2) = 2(1 + 12)

We then apply the procedure in (2.47) to obtain the parameterized length-4 matrix lowpass

175



APPENDIX B. EXAMPLES OF MULTIFILTERS 176

sequence {H}2__, as

2 2
H, - . (v—1)7° 7(1-v°
- 7 )
rv—-12 v2-1
2 2
oo . (v+1) 7(1l —v?)
0 2(1+07) )
-T(v+1)2 1-2?

H1 = SP1.5’ and H2=SP05

The associated length-4 matrix highpass sequence {Gj}s__; can be obtained directly using

Proposition 2.3.

B.2 Parameterization of Length-6 SAOMF Family.

Using the polyphase matrix factorization in (2.38) with the constraints on the angle param-
eters, aj,7 =0,1,..., N —1, as shown in (2.39), we can construct a parameterized SAOMF
of length-6 when N = 3. Taking ap = 2nm + § — a1 — ag, 1 = tanay, B2 = tanag, and

v = (14 B%)(1 + B2), we obtain the following length-6 scalar CQF:

ho = (B1+ B2 — P12+ 1)/v, h1=—(B1+ P2+ B1B2— 1)/,
ho = B1(B1 — 1)/(1 + %), hs = Bi(B1 +1)/(1 + B%),
ha = Bo(B1 + B2 + B1f2 — 1) /v, hs = Pa(B1L + B2 — P1f2+1)/7.

Applying Lemma 2.1, we obtain the length-12 scalar CQF with even-indexed coefficients:

bo = ((B1 + B2) (7 +1) + (B1B2 — 1)(1 — 1)) /(27),

by = B2 ((B1 + B2) (1 +1) — (B1f2 — 1) (T — 1)) /(27),
by=p1(f1—1—7(B1+1))/(2(1 + B})),

be =B (B — 1+ 7(B1 +1))/(2(1 + B)),

bs = B2 ((B1 + B2) (=7 + 1) + (B1B2 — (7 + 1)) /(27),
bio = ((Br+ Bo) (=T + 1) = (B1B2 — 1) (7 + 1)) /(27),
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and odd-indexed coefficients bog 1 = 7(—1)¥+1bgy, k = 0,1,...,5. By means of (2.47) with

7 = —1, the parameterized matrix lowpass filter is given by
- . —Pifa+1  —7(B1+ f2)
-2 = TS
(Bi+1)(B3+1) ’
T | —T(Bif2 = 1) Bt
Bi+p2 —T(=Pif2+1) BT
H = 22— , Hy= )
(Bi+1)(B3+1) Bi+1
| 7 (61 +P2) Bif2 — 1 pir —1

and Hy, = SH,_;S, k = 1,2,3. The matrix highpass sequence {Gy}}__, can be con-
structed via Proposition 2.3. The SA6 family of SAOMFs have two free parameters that

allow the incorporation of different desirable multifilter design properties.

B.3 Parameterization of BSA(4/4) SABMF Family.

A family of length 4/4 SABMFs with a GMP order of at least (3,1) can be constructed

with the following matrix lowpass sequences:

2y 1 3(2y — 1) 1
H - 8y —3 8 N H, — 8y —3 8 N
8 8

H1:SH()S, HZZS.H-flS, and
B 2 16’;(27 ; 1) B |9y 16’;(27 ; 1)
H—l = T 3 HO = v )

2 16 16

38y —1) Fay(2y-1) —ay =12y -1) —gay(2y-1)

H, = SH(S, H,=SH_,S, with~ being the parameter, and o = V3/(8y —1)/(8y — 3).
Note that when v = (17 — v/241) /64, this SABMF has a GMP order (3, 2).
The corresponding matrix highpass sequences are obtained by solving the PR condi-

tions, and they are given by

16py(2y — 1) 2y —16py(2y — 1) (67— 1)
8y —3 8y —3
. Go=
) (87 — 5) ’ ) (1692 — 18y + 3)
42y - 1) 8v(2y — 1)

G_, =
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G1 :SG()S, ngSG,l.S’, and

1 5 -1 1672 — 18y + 3
= 8p = 8p v(8y —5)
Gfl — ) GO - ’
72y —1) 16py(2y — 1) 72y —1) 8p(2y —1)(6y - 1)
8y —3 8y —29 8y —3 8y —9

C~¥1 = SéOS, éQ = Sé,ls, and p = o?y(8y — 5)/3. Two additional parameters &
and 7 for the highpass filters can be introduced as described in Theorem 2.3. Thus the
length 4/4 family of SABMFs has three parameters, namely, 7, 6 and 7. Through min-
imizing the deviation of the frequency responses for both matrix lowpass and highpass

filters from those of the ideal brickwall filters, we have found a solution with (vy,d,7) =

(0.02491,0.066063, —0.044016), which we denote as the BSA(4/4) SABMF.

B.4 Parameterization of BSA(5/5) SABMF Family.

Using Method 2, we obtain a family of length 5/5 SABMFs with GMP order at least (3,3)

and approximation order (1,2) with the matrix lowpass sequences given by

1 1— 3y 11y +1
26 2 8y 16
H_, = , Ho= , Hy = ;
112y — 3 1 . 167 + 11
Pa 2B 16(1—167) 1— 167 8(167 — 1)
HQZSH()S, H3:SH_1S, and
1 1
~ 203 Ps . 2 2y - 5 T4 0
H = , Ho= , Hp=
) 1—-16y 1-—16y 0 12872 +8y -1
Bs Pa 16y 4 32
— —_— = = . i 5y -1
H, = SH,S, H; = SH_,S, with v being the parameter, and f; = 500 Bo =
v
16y — 5 1 12872 — 24y + 1 _
—_— = - — d = . Note that wh = 3/14, th
32(1—167)’53 g~ an Ba 61 ote that when ~ /14, this

SABMF has a GMP order (4, 3).

The corresponding highpass sequences are obtained by solving the PR conditions, and
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they are given by

12 p=2 200-p)
G_1= pop ) GO = p ) G = p )
1 2 p—2 2p 0 4(p—1)
GQZSG()S, G3:SG715, and
p 16+ 11p 13p? + 22p — 32 0
- P 1 d-y spr2)| 20— )
G_| = , Go= , Gi1=
265 B 6 + 5p 1 0 19p — 22
6 "0 32p(p — 2) 8p 64p(p — 2)
~ ~ ~ ~ — 16 3p% +10p + 32
= = o h = = —m— d -
G2 SGQS, G3 SG 15, where p 8')/ — 1, ﬂ5 128(4 — ,02) an /86
1
%. Introducing the highpass parameters as described in Theorem 2.3 gives us a
ple—p

set of parameters (v, 7,d) for filter design. By imposing the design constraint to minimize
the deviation from the ideal brick-wall filter, we obtained (v, 7, J) = (0.166,0.02904, 0.3823),

which gives the BSA(5/5) SABMF.

B.5 Matrix Filter Coefficients of BSA(6/6), BSA(8/6), and

BSA(7/9) SABMFs.

For concise presentation, only the left halves of the symmetric and antisymmetric matrix
sequences are given; the other half of the matrix sequences can be obtained directly via
(2.49), (2.50), (2.63), and (2.64). The four elements of each 2 x 2 matrix are shown in the

tables below.
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matrix elements

(1,1)

(1,2)

(2,1)

(2,2)

3.7500000000 x 10~3
3.7500000000 x 10~3
9.9250000000 x 10~*

1.4228515625 x 1072
1.1077148438 x 101
9.6542968750 x 102

—3.5261765040 x 10~3
3.5261765040 x 1073
—9.9294764699 x 101

—1.1217948718 x 10—2
—9.1346153846 x 10~2
1.0256410256 x 10~

1.1875000000 x 102
1.1875000000 x 102
9.7625000000 x 10~!

—1.7500000000 x 10~2
1.4250000000 x 10~*
1.6000000000 x 10~*

—1.4862396101 x 10~2
1.4862396101 x 102
—9.7027520780 x 10~1

2.6122346529 x 10~2
—2.0336703959%x 10!
1.7724469306 x 10~

6.5648882468 x 103
—1.7574894635 x 10~!
1.6918405810x 107!

—3.0964377335x 1072
—1.3733503316 x 10~*
—9.0080319008 x 10~*

4.3525896101 x 103
—1.3761875586 x 10~1
—1.4197134547 x 1071

—2.6994758871 x 102
—1.2938385229 x 10!
—9.0975071883 x 10~!

4.7800000000 x 103
—9.6082189893 x 10~2
9.1302189893 x 102

—2.1363070388 x 102
1.4225207034 x 101
—1.0951449891

5.4000000000 x 10~3
—1.2264656332 x 1071
—1.2804656332x 101

—2.6135973142 x 102
1.7257217778 x 101
—1.0844087112

Table B.1: Matrix filter coefficients for the length 6/6 SABMF, BSA(6/6).
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matrix elements
(1,1) (1,2) (2,1) (2,2)

H ;|| —8.2302083262x 10 * | 8.2302083262x 10~ % | 9.6022938094x 10~ % | —9.6022938094x 10 *
H , || —4.6234965230x 1073 | 8.2077182033x1073 | 1.3974875495x1073 | —6.4715835076 x 10~3
H_; || —8.8047997154x 1073 | 1.1514624013x 107! | 2.5093985463 x 103 | —1.0001233526 x 10~*
H, 1.0142513171 1.0776154276 x 10! —1.0212372391 1.0744414815x 10!
H_, | 2.1104701795x1072 | —2.1104701795x 102 | —1.9985994269 x 10~2 | 1.9985994269 x 10>
H_, | 2.6799308895x10 2 | 1.4610470180x10 1.4291387169x 102 | —1.8943281291x 10!
H, 9.5209598931 x 10~! 1.6720940359 x 107! | —9.4294419016 x 10~ | 1.6944681864 x 10~*
G_3 || 1.7829230862x 102 | —1.7829230862x 102 | —2.3452016066 x 10~2 | 2.3452016066 x 102
G || —1.5253945168 x 10~ | 1.8475712670x 1072 | 1.5061297307 x 10~* 1.4559887080 x 10—2
G_1 || 1.3471022082x 107! | —7.5869505647 x 10~ | 1.7406498914 x 10~1 | 9.7927575289 x 10—+
G_4 || —1.5234945394x 1073 | 1.5234945394x1073 | 1.0805555534x 1073 | —1.0805555534x 103
G_3 || —9.8235980627 x 103 | —3.9031124881 x10™* | 8.9939643797x 103 | —2.3321146392x 103
G_, || —1.2411843813x 10! | —1.3651668127x 1072 | 1.1172069054x 10~} | 6.2836197534x 10~*
G_1 || 1.3546553073x 107" —1.2695994976 1.0380728171x10~" | 9.8579043639x 10~!

Table B.2: Matrix filter coefficients for the length 8/6 SABMF, BSA(8/6).




APPENDIX B. EXAMPLES OF MULTIFILTERS 182

matrix elements

(1,1) (1,2) (2,1) (2,2)

H ;|| 2.4344641344x1072 | 8.0308636460x 1073 | —1.4303031405x 1072 | —2.2484089612 x 10~
H_, || —5.9584095876 x 1072 | —6.7345319191x 102 | 9.1258095290 x 102 1.3679981195x 10—+
H_, || 4.9756553587x10~! | 3.3899626889x 1071 | —6.4314887462x 10! | —5.8587445386x 10!
H, 1.1191681918 0 0 9.4311746304 x 107!

H_, | 4.6532884089x 10~ % | 1.3454909684x 103 | —1.5859468567 x 103 | —1.5100595484 x 103
H ;|| 4.6032430899x10~3 | 9.2260003323 x1073 | 5.5684633005x 1073 | 7.9169461102x10~*
H_, || —7.4100607596 x 10~2 | —4.2124994014x 1072 | 1.0567420381 x 101 5.6400334801 x 10~2
H_; || 4.9539675691x10~! | 3.0730677897x10"1 | —6.3082688988x 10! | —4.1173356874x 10!
H, 1.1472705575 0 0 7.1210319776 x 107!

G_s || 7.2032111363x10~% | 2.1517368074x 103 | —2.4185700065x 103 | —5.5906496284 x 10~ 3
G 4 || —1.5277852687x 1072 | —1.7573761065x 1072 | 3.4174427829x 1072 | 4.1879446146 x 10~2
G_3 || 8.4831158796x 1072 1.1194381191x 10~ | —1.0636149261x 10! | —1.1607913261 x 10~!
G_» || —4.0497214731x 1071 | —5.5246405542x 101 | 3.2584646973 x 10+ 3.6022717769x 10!
G_ 1 | 6.6939704018x 107! 0 0 1.0475528122

G_4 || —3.6769171486x 102 | —3.9466446717x 1072 | 1.9861584220x 102 1.9330180380 x 102
9.8299274500x 10~% | —2.8355176261x 102 | —6.6840892804 x 102 | —5.5235811329x 103

o
|

G_, || —5.5811482613x 10~ | —7.8764710492x 10~ | 3.5809909597x 10! | 6.0239546446 x 10~
G_1 || 9.9316944624 %10 0 0 1.2544984519

Table B.3: Matrix filter coefficients for the length 8/6 SABMF, BSA(8/6).
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