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Some Properties of Symmetric–Antisymmetric
Orthonormal Multiwavelets

Lixin Shen, Hwee Huat Tan, and Jo Yew Tham

Abstract—We analyze the discrete multiwavelet transform using sym-
metric–antisymmetric orthonormal multifilters (SAOMF’s) and prove that
for any even-length SAOMF, we can always find an odd-length SAOMF
such that the implementation of discrete multiwavelet transform using ei-
ther the even-length or the odd-length SAOMF produces identical output
for a given input signal if the sum/difference prefilter is chosen.

Index Terms—Multifilters, multiwavelets, prefilter.

I. INTRODUCTION

Multiwavelets are generated by more than one scaling function.
There are many degrees of freedom in the construction of multi-
wavelets. These allow for more features to be built into a multiwavelet
transform and enable one to construct multiwavelet filters to suit
one’s needs. For instance, a multiwavelet can have small support,
orthonormal integer translates, as well as symmetry [2]. However, as is
known, there exist some important differences between multiwavelet
and scalar wavelet bases, and these differences become apparent when
one implements the discrete multiwavelet transform (DMWT). First,
in the processing of discrete-time signals, preprocessing (prefiltering)
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of the discrete data is an essential and necessary step that does not
arise for scalar wavelet transforms. Several authors have addressed
the design of prefilters that are specifically suited for the DMWT
[3], [5], [6], [8]–[10], [12], [13]. Second, for multiwavelet bases,
one only focuses on the zero moment properties of the associated
multifilter banks and the construction of specializedK-balanced or
“good frequency characteristics” multiwavelets [4]–[7], [9], [11].

In our previous paper [7], it was shown that the length-2N and
length-(2N + 1) multifilters, where the associated multiwavelets
are symmetric and antisymmetric pairs, can be obtained from one
another. However, from a mathematical viewpoint, the corresponding
multiwavelets may have different compact support, regularity, and
approximation order. We will point out these differences with some
examples. This paper highlights the equivalence between even-length
and odd-length symmetric–antisymmetric orthonormal multifilters
(SAOMF’s), which can be derived from one another, for applications
in signal processing if the sum/difference prefilter is used.

II. PRELIMINARIES

An orthonormal multiwavelet system with multiplicityr consists of
one multiscaling function vector���(x) = [�1(x); � � � ; �r(x)]

T and
one multiwavelet vector   (x) = [ 1(x); � � � ;  r(x)]

T . ��� generates
a multiresolution analysisfVkgk2 of L2( ). In the following, we
will restrict ourselves to considering only multiscaling functions and
multiwavelets with compact support. The vectors��� and   satisfy the
following refinement and wavelet equations:

���(x) =
k2

PPP k���(2x� k) (1)

   (x) =
k2

QQQ
k
���(2x� k) (2)

respectively, wherefPPP kg andfQQQ
k
g are finiter� r matrix sequences.

We will refer to �i ’s and i’s as the multiscaling and multiwavelet
functions, respectively, and the matrix sequencesfPPP kg andfQQQ

k
g as

the lowpass and highpass finite impulse responses, respectively.
If a continuous-time signalv(t) 2 V0 can be expanded as

v(t) =
k

���
T (t� k)vvv

(0)
k

wherevvv(0)
k

is the vectorized discrete-time signal representative of the
input signalv(t), then it follows that we have the well-known relations

vvv
(1)
n =

k

PPP k�2nvvv
(0)
k
; ddd

(1)
n =

k

QQQ
k�2nvvv

(0)
k

(3)

for the analysis stage, and

vvv
(0)
n =

k

PPP
T

n�2kvvv
(1)
k

+
k

QQQ
T

n�2kddd
(1)
k

(4)

for the synthesis stage.

III. SYMMETRIC–ANTISYMMETRIC ORTHONORMAL MULTIFILTERS

Several works [1], [4], [5], [7] studied the special case of multi-
wavelet systems for multiplicityr = 2, where the filters are SAOMF’s.
We say that a finite length matrix sequencefPPP kg

N

k=N satisfiesCon-
dition SAif the following condition holds:

PPP k = SSSPPP
N +N �k

SSS; k = N
`
; � � � ; N

u (5)

whereSSS = diag(1; �1). As shown in [1], (5) is required for sym-
metric–antisymmetric multiscaling functions, which can be expressed
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in the form�1(x) = �1(N
u + N `

� x) and�2(x) = ��2(N
u +

N `
� x): The lowpass sequencesfPPPgN

k=N
that satisfy Condition SA

will lead to SAOMF’s if other conditions such orthogonality and con-
jugate quadrature filter conditions are satisfied. For ease of notation,
without loss of generality, we will assume thatN ` = 0 in the fol-
lowing presentation.

For any odd-length SAOMFfPPP kg2Nk=0, we can always assume that
(see [7])

PPP 0 =
� �

� �
andPPP 2N =

� ��
�� �

: (6)

Denote

�1 :=
1

2

1 �1

1 �1
and�2 :=

1

2

1 1

�1 �1
:

Theorem 1 ([7]): Let fPPP e; kg2N�1k=0 be an even-length SAOMF.
Construct

PPP o; k = PPP e; k�1�1 + PPP e; k�2; k = 0; � � � ; 2N (7)

wherePPP e;�1 = 0, andPPP e; 2N = 0. Then,fPPP o; kg2Nk=0 is an odd-
length SAOMF. Conversely, given an odd-length SAOMFfPPP o; kg2Nk=0,
construct

PPP e; k = PPP o; k�1 + PPP o; k+1�2; k = 0; � � � ; 2N � 1: (8)

Then,fPPP e; kg2N�1k=0 is an even-length SAOMF.
This theorem is also true for the associated highpass multifilters sat-

isfying Condition SA.
The conversion from even-length SAOMF’s to odd-length

SAOMF’s usually increases the compact support and changes the reg-
ularity and the approximation order of the corresponding multiscaling
function���. This can be illustrated by the following example.

Example—A Class of Length-4 SAOMF’s:A class of length-4
SAOMF’s with one parameter is given [7] by

PPP e; 0 =

1

�2 + 1

�

�2 + 1

1

�2 + 1
� �

�2 + 1

PPP e; 1 =

�2

�2 + 1

�

�2 + 1

� �2

�2 + 1

�

�2 + 1

andPPP e; 2 = SSSPPP e; 1SSS, PPP e; 3 = SSSPPP e; 0SSS. The associated highpass
multifilter is given byQQQe; k = (�1)k+1PPP e; 3�kAAA for k = 0; 1; 2; 3,
where AAA = 0 1

1 0 . The multiscaling functions for this class
of SAOMF’s are supported on[0; 3]. The special case when
� = 4 +

p
19 gives the SA4(1) filter, which has approximation order

two and a Sobolev exponent of1:5270 for its multiscaling functions.
Another case when� = 4 +

p
11 gives the SA4(2) filter, which

has approximation order one and a Sobolev exponent of0:9650 for
its multiscaling functions. By applying Theorem 1, we can derive
from the above class of length-4 SAOMF’s a class of one-parameter
length-5 SAOMF’s as

PPP o; 0 =

1� �

2(�2 + 1)

1� �

2(�2 + 1)

1 + �

2(�2 + 1)

1 + �

2(�2 + 1)

PPP o; 1 =

1

2

�2 � 2�� 1

2(�2 + 1)

1� 2�� �2

2(�2 + 1)
�1

2

PPP o; 2 =

�+ �2

�2 + 1
0

0
�2 � �

�2 + 1

PPP o; 3 = SSSPPP o; 1SSS, andPPP o; 4 = SSSPPP o; 0SSS. The multiscaling functions
for this class of SAOMF’s are supported on[0; 4]. Using the same two
values of� for obtaining SA4(1) and SA4(2) gives us the SA5(1) and
SA5(2) filters, respectively. Now, in contrast to its length-4 “relative,”
SA5(1) has only approximation order one and a Sobolev exponent of
0:9691 for its multiscaling functions. Furthermore, SA5(2), in contrast
to SA4(2), has approximation order two and a Sobolev exponent of
1:4947 for its multiscaling functions. The associated highpass multi-
filter fQQQo; kg4k=0 can be obtained fromfQQQe; kg3k=0 and Theorem 1.
See Fig. 1 for plots of multiscaling functions for SA4(1) and SA5(1)
filters. Although the function profiles appear identical, there are differ-
ences on closer examination.

In the following, we always assume thatfPPP e; kg2N�1k=0 and
fPPP o; kg2Nk=0 can be derived from one another according to Theorem 1.

IV. DISCRETEMULTIWAVELETS TRANSFORMUSING SAOMFs

Although the mathematical properties of��� may be totally changed
when one converts from an even-length SAOMF to an odd-length
SAOMF, we will show in this section that for any such pair of related
SAOMF’s, when the two input vector sequences satisfy certain linear
relations, then the same output vector sequence can be produced from
the discrete multiwavelet transforms (3). These relations are precisely
expressed in the following theorem.

Theorem 2: Let two vector sequencesfvvvkg andfuuukg satisfy

uuuk = �2vvvk�1 +�1vvvk: (9)

Then, for any integern, we have the following three relationships:

a) 2N�1

k=0
PPP e; kvvvk+2n = 2N

k=0
PPP o; kuuuk+2n.

b) 2N

k=0
PPP o; kvvvk+2n = 2N�1

k=0
PPP e; kuuuk+1+2n.

c) 2N�1

k=0
PPP e; kuuuk+2n = 2N

k=0
PPP o; kvvvk�1+2n.

Proof: We first treat a). From Theorem 1 and the facts,
PPP o; 0�2 = PPP o; 2N�1 = 0, and we can conclude that

2N�1

k=0

PPP e; kvvvk+2n =

2N�1

k=0

(PPP o; k�1 + PPP o; k+1�2)vvvk+2n

=

2N

k=0

PPP o; k(�1vvvk+2n +�2vvvk�1+2n)

=

2N

k=0

PPP o; kuuuk+2n:

Hence, a) holds. Similarly, we can show that b) holds.
Note that�1�1 = 0,�2�2 = 0, and�2�1 +�1�2 = III . If

two vector sequencesfvvvkg andfuuukg satisfy (9), then it is easy to show
that

vvvk =�2uuuk +�1uuuk+1: (10)

We can prove c) in a similar manner, as has been done for a).
For some symmetric–antisymmetric multiwavelet systems, the pre-

filter can be chosen as the sum/difference prefilter

RRR =
1p
2

1 1

�1 1
:

This orthogonal and nonredundant prefilter has been shown to be ef-
fective for symmetric–antisymmetric multiwavelet systems (see [9]).
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Fig. 1. Plots of multiscaling functions for (a) SA4(1) and (b) SA5(1)
multifilters.

We also define two mappingsV andU that formulate the two vector
sequencesfvvvkg andfuuukg from a given signalfxkg as

vvvk = RRR
x2k

x2k+1
anduuuk = RRR

x2k�1

x2k
(11)

respectively. It is easy to check thatfvvvkg andfuuukg satisfy (9) and
(10). Now, for a signalfxkg, we define two new signalsfxkg and
fxkg by xk = xk�1 andxk = xk+1 for any k. The actions ofV
andU on fxkg andfxkg will produce four vector sequencesfvvvkg,
fuuukg, fvvvkg, andfuuukg. It is easy to establish these simple relations:
vvvk = uuuk, uuuk = vvvk�1, vvvk = uuuk+1, anduuuk = vvvk. Applying these
relations allows us to interpret items a), b), and c) in Theorem 2 with
the following equivalent statements.

a) The application of DMWT on an input signalfxkg using
fPPP e; kg

2N�1
k=0 and prefiltering withV will produce the same

output as that of usingfPPP o; kg
2N
k=0 and prefiltering withU .

b) The application of DMWT on an input signalfxkg using
fPPP o; kg

2N
k=0 and prefiltering withV will produce the same

output as the application of DMWT on an input signalfxkg
usingfPPP e; kg

2N�1
k=0 and prefiltering withV .

c) The application of DMWT on an input signalfxkg using
fPPP e; kg

2N�1
k=0 and prefiltering withU will produce the same

output as the application of DMWT on an input signalfxkg
usingfPPP o; kg

2N
k=0 and prefiltering withU .

Note that the indices of both even-length and odd-length SAOMF’s
start from 0. By manipulating the indices ofuuu andvvv in the right-hand
sides of b) and c) in Theorem 2, it is possible to have different starting
indices for the even-length and odd-length SAOMF’s, and we could
rephrase statements b) and c) above as follows.

b)0 The application of DMWT on an input signalfxkg using
fPPP o; kg

2N
k=0 and prefiltering withV will produce the same

output as that of usingfPPP e; kg
2N
k=1 and prefiltering withU .

c)0 The application of DMWT on an input signalfxkg using
fPPP e; kg

2N�1

k=0 and prefiltering withU will produce the same
output as that of usingfPPP o; kg

2N�1

k=�1 and prefiltering withV .

V. CONCLUSIONS

From the above discussion, we conclude that even-length and odd-
length SAOMF’s in related pairs are equivalent when the sum/differ-
ence prefilter is integrated with the corresponding DMWT. This means
that in the absence of code optimization in exploiting the structure of
the lowpass/highpass matrix coefficients, it will be more efficient to
apply the shorter even-length filter in implementation.
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