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Some Properties of Symmetric—Antisymmetric

Orthonormal Multiwavelets é(r) =Y Prp(2z— k) (1)
keZ

Lixin Shen, Hwee Huat Tan, and Jo Yew Tham () = Z Q.d(2x — k) (2)
kez

Abstract—\We analyze the discrete multiwavelet transform using sym- respectively, wher¢ P, } and{Q,} are finiter x » matrix sequences.
metric—antisymmetric orthonormal multifilters (SAOMF’s) and prove that We will refer to ¢;’s and+);’s as the multiscaling and multiwavelet
for any even-length SAOMF, we can always find an odd-length SAOMF functions, respectively, and the matrix sequencBs} and{Q, } as

such that the implementation of discrete multiwavelet transform using ei- . L .
ther the even-length or the odd-length SAOMF produces identical output the lowpass and highpass finite impulse responses, respectively.

known, there exist some important differences between multiwavelet
and scalar wavelet bases, and these differences become apparent when
one implements the discrete multiwavelet transform (DMWT). Firstor the synthesis stage.
in the processing of discrete-time signals, preprocessing (prefiltering)
lll. SYMMETRIC—ANTISYMMETRIC ORTHONORMAL MULTIFILTERS

for a given input signal if the sum/difference prefilter is chosen. If a continuous-time signal(t) € Vo can be expanded as

Index Terms—Multifilters, multiwavelets, prefilter. v(t) = Z &' (t — k)véo)

k
I. INTRODUCTION wherevgf) is the vectorized discrete-time signal representative of the

Multiwavelets are generated by more than one scaling functidhAput signalv(t), then it follows that we have the well-known relations

There are many degrees of freedom in the construction of multi- (1 (0) (1) (0)
. . = Py_ nUp > dn = c— & :
wavelets. These allow for more features to be built into a multiwavelet Un ; k2 ¥k ; Q20 Vi ©)
transform and enable one to construct multiwavelet filters to suit )
one’s needs. For instance, a multiwavelet can have small supp#,the analysis stage, and
orthonormal integer translates, as well as symmetry [2]. However, as is / o 7
g y y[2] v = Z Pl Z Q' dY 4)
k k
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in the formoy (x) = ¢1(NY + N® — 2) andga(z) = —¢o(N* + a+to”
N‘— ). The lowpass sequencé®},_ , . that satisfy Condition SA p,,— | Tl
will lead to SAOMF's if other conditions such orthogonality and con- ’ 0 o’ —a
jugate quadrature filter conditions are satisfied. For ease of notation, a?+1

without loss of generality, we will assume that’ = 0 in the fol- P.3 = §SP, .S, andP, . = SP,. oS. The multiscaling functions

lowing presentation. oN for this class of SAOMF's are supported [ 4]. Using the same two
For any odd-length SAOMR i };=,, we can always assume thatvalues ofw for obtaining SA4(1) and SA4(2) gives us the SA5(1) and

(see [7]) SA5(2) filters, respectively. Now, in contrast to its length-4 “relative,”
o o o —a SA5(1) has only approximation order one and a Sobolev exponent of
Py = {3 3} andPay = {_3 5} (6)  0.9691 for its multiscaling functions. Furthermore, SA5(2), in contrast
' ' to SA4(2), has approximation order two and a Sobolev exponent of
Denote 1.4947 for its multiscaling functions. The associated highpass multi-
1 _1 1 1 filter {Q, .}t—o can be obtained fromMQ, ,};—, and Theorem 1.
Api=g L _1} andA; := 3 {_1 _1} : See Fig. 1 for plots of multiscaling functions for SA4(1) and SA5(1)

filters. Although the function profiles appear identical, there are differ-
Theorem 1 ([7]): Let {P. :}:Y,* be an even-length SAOMF. ences on closer examination.
Construct In the following, we always assume thdtP. »}i~, ' and
{P, 1 }1Y, can be derived from one another according to Theorem 1.
Poyk:PC7k71A1 —|—PcykA2./ k=0,---,2N (7)

whereP. _; = 0, andP. .y = 0. Then,{P.. . igo is an odd- IV. DISCRETEMULTIWAVELETS TRANSFORMUSING SAOMFs

length SAOMF. Conversely, given an odd-length SAOME, 1.}, Although the mathematical properties@imay be totally changed

construct when one converts from an even-length SAOMF to an odd-length
. SAOMF, we will show in this section that for any such pair of related
P. =P, A1+ P, 10, k=0,---,2N -1 (8) SAOMF's, when the two input vector sequences satisfy certain linear

Then, {P. }ifo_l is an even-length SAOMF. relatl_ons, then th_e same output vector sequence can be produceo_l from
= ti‘lg discrete multiwavelet transforms (3). These relations are precisely

This theorem is also true for the associated highpass multifilters sa i .
L - expressed in the following theorem.
isfying Condition SA.

The conversion from even-length SAOMF's to odd-length Theorem 2: Let two vector sequencewy } and{uy } satisfy

SAOMF's usually increases the compact support and changes the reg-
ularity and the approximation order of the corresponding multiscaling
functioné. This can be illustrated by the following example.

Example—A Class of Length-4 SAOMF'& class of length-4
SAOMF's with one parameter is given [7] by

ur = Aowp_1 + Ayvg. 9)

Then, for any integer, we have the following three relationships:
a) Z%Zo_l P, viton = Zz;o P, rtri2n.
7 IN—=1

b) 22%0 Po,kvk+2n = k:% Pe,kuk+l+2n.
[ ﬁ)l 2‘1 ] ©) it Pekigan = 2oy Po k1420,
po= ¥+ ol Proof. We first treat a). From Theorem 1 and the facts,
1 o« P, oA, = P, o.nA; = 0, and we can conclude that
La?2 +1 a? 414
_ (12 o _ 2N -1 2N—1
21 o2+l Z P viqon = Z (Po, kA1 + Py 11 A2)0p 42,
P.,= B ) h k=0 k=0
_ [a% [a% 2N
- o+l o417 = Zpo,k(Alvk+2n + Acvg_142n)
andP.» = SP. S, P..s = SP. (S. The associated highpass k=0
multifilter is given by@, , = (-1)**' P, 5_Afork =0, 1, 2, 3, i
where A = [} §]. The multiscaling functions for this class =2 Poxttiton.
k=0

of SAOMF's are supported or0, 3]. The special case when

a = 4+ /19 gives the SA4(1) filter, which has approximation ordeHence, a) holds. Similarly, we can show that b) holds.

two and a Sobolev exponent df5270 for its multiscaling functions.  Note thatA; A; = 0, As A, = 0, andAsA; + A A, = 1. If
Another case whem = 4 + /11 gives the SA4(2) filter, which two vector sequencew; } and{u } satisfy (9), then itis easy to show
has approximation order one and a Sobolev exponebtd®h0 for  that

its multiscaling functions. By applying Theorem 1, we can derive

from the above class of length-4 SAOMF's a class of one-parameter vr = Asgup + Aty (10)
length-5 SAOMF’s as

1l —a 1—a We can prove c) in a similar manner, as has been done for a). =
2002 +1) 2(a2+1) For some symmetric—antisymmetric multiwavelet systems, the pre-
P, = 1+a 14 a ’ filter can be chosen as the sum/difference prefilter
L2(a2+1) 2(a?+41) 1 1 1
r 1 a® —2a—1 R=—
- —ca— V2 -1 1
P 2 2(a? + 1)
21T Con— a2 1 This orthogonal and nonredundant prefilter has been shown to be ef-
L 22+ 1) 1) ) fective for symmetric—antisymmetric multiwavelet systems (see [9]).
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c) The application of DMWT on an input signdlz.} using
{P.};Y, " and prefiltering witht/ will produce the same
output as the application of DMWT on an input sigal, }
using{P.,, . }7Y, and prefiltering with/.

Note that the indices of both even-length and odd-length SAOMF’s
start from 0. By manipulating the indices @fandw in the right-hand
sides of b) and ¢) in Theorem 2, it is possible to have different starting
indices for the even-length and odd-length SAOMF’s, and we could
rephrase statements b) and c) above as follows.

b) The application of DMWT on an input signdlzx} using
{P, 1}#Y, and prefiltering with} will produce the same
output as that of usingP. . }3Y, and prefiltering withi4.

c) The application of DMWT on an input signgdlz;} using
{P. 12N and prefiltering witht/ will produce the same
output as that of usingP., . };X ~! and prefiltering withy.

V. CONCLUSIONS

From the above discussion, we conclude that even-length and odd-
length SAOMF’s in related pairs are equivalent when the sum/differ-
ence prefilter is integrated with the corresponding DMWT. This means
that in the absence of code optimization in exploiting the structure of
the lowpass/highpass matrix coefficients, it will be more efficient to
apply the shorter even-length filter in implementation.

REFERENCES

[1] C. K. Chuiand J. Lian, “A study on orthonormal multiwaveletdgpl.
Numer. Math. vol. 20, no. 3, pp. 273-298, 1996.

[2] G. Donovan, J. S. Geronimo, D. P. Hardin, and P. R. Massopust, “Con-
struction of orthogonal wavelets using fractal interpolation functions,”
SIAM, J. Math. Anaj.vol. 27, pp. 1791-1815, 1996.

[3] D. P. Hardin and D. W. Roach, “Multiwavelet prefilters |: Orthogonal
prefilters preserving approximation orde 2,” IEEE Trans. Circuits

Vo Syst. || vol. 45, pp. 1106-1112, Aug. 1998.

o [4] Q. Jiang, “On the design of multifilter banks and orthonormal multi-
wavelets bases|EEE Trans. Signal Processingpl. 46, pp. 3293-3303,

-1.4 r T r Dec. 1998.

[5] J.Lebrun and M. Vetterli, “Balanced multiwavelets theory and design,”

IEEE Trans. Signal Processingol. 46, pp. 1119-1124, Apr. 1998.

(b) [6] I. W. Selesnick, “Multiwavelet bases with extra approximation prop-
erties,” |IEEE Trans. Signal Processingol. 46, pp. 2898-2908, Nov.

Fig. 1. Plots of multiscaling functions for (a) SA4(1) and (b) SA5(1) 1998.

multifilters. [7] L. Shen, H. H. Tan, and J. Y. Tham, “Symmetric-antisymmetric or-

thonormal multiwavelets and related scalar waveletgpl. Comput.
Harmon. Anal, vol. 8, pp. 258-279, May 2000.
We also define two mappings and/( that formulate the two vector ~ [8] V. Stréla, P. N. Heller, G. Strang, P. Topiwala, and C. Heil, “The ap-
. . plication of multiwavelet filterbanks to image processingEE Trans.
sequencegv, } and{u, } from a given signalv. } as Image Processingvol. 8, pp. 548563, Apr. 1999.
[9] J. Y. Tham, L. Shen, S. L. Lee, and H. H. Tan, “A general approach
Lok Tog—1 for analysis and application of discrete multiwavelet transforitsE
v. =R Tokt1 andu;, = R Lok (11) Trans. Signal Processingol. 48, pp. 457-464, Feb. 2000.
[10] M. J. Vrhel and A. Aldroubi, “Projection based prefiltering for mul-
respectively. It is easy to check thét, } and {u;} satisfy (9) and g‘g’ggﬁfégg?r,l‘sgs_rTgsééFEE Trans. Signal Processingol. 46, pp.
(10). Now, for a signa«, }, we define two new signal§xz, } and  [11] C. Weidmann, J. Lebrun, and M. Vetterli, “Significance tree image

{#r} by z, = 21—, andTr = xr41 for any k. The actions ofY coding usin_g balanced multiwavelets,” iRroc. Int. Conf. Image
Process. Chicago, IL, Oct. 1998.

-0.7 -

andif on {z,} and{z;} will produce four vector sequencés, }, > - ) .
{u,}, {8}, and{@,}. It is easy to establish these simple relations: [12] X. G. Xia, J. S. Geronimo, D. P. Hardin, and B. W. Suter, “Design of
Bt WUk LEA y - p ) prefilters for discrete multiwavelet transform$EEE Trans. Signal Pro-

v, = ug, ¥, = Vp_1, Uk = ugq1, andu = wvi. Applying these cessingvol. 44, pp. 25-35, Jan. 1996.

relations allows us to interpret items a), b), and c) in Theorem 2 witH13] X. G. Xia, “A new prefilter design for discrete multiwavelet transforms,”
the f0||owing equiva|ent statements. IEEE Trans. Signal Processingol. 46, pp. 1558-1570, June 1998.

a) The application of DMWT on an input signdl:,} using
{P. ;. }32; " and prefiltering with) will produce the same
output as that of usingP,, 13~ and prefiltering witti/.

b) The application of DMWT on an input signdlu.} using
{P, 1}1Y, and prefiltering with} will produce the same
output as the application of DMWT on an input sigfal; }

using{ P, }:2:" and prefiltering with).




