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A General Approach for Analysis and Application of
Discrete Multiwavelet Transforms

Jo Yew Tham, Lixin Shen, Seng Luan Lee, and Hwee Huat Tan

Abstract—This paper proposes a general paradigm for the anal-
ysis and application of discrete multiwavelet transforms, particu-
larly to image compression. First, we establish the concept of an
equivalent scalar (wavelet) filter bank systemin which we present an
equivalent and sufficient representation of a multiwavelet system
of multiplicity in terms of a set of equivalent scalar filter banks.
This relationship motivates a new measure called thegood mul-
tifilter properties (GMP’s), which define the desirable filter char-
acteristics of the equivalent scalar filters. We then relate the no-
tion of GMP’s directly to the matrix filters as necessary eigen-
vector properties for the refinement masks of a given multiwavelet
system. Second, we propose a generalized, efficient, and nonredun-
dant framework for multiwavelet initialization by designing ap-
propriate preanalysis and post-synthesis multirate filtering tech-
niques. Finally, our simulations verified that both orthogonal and
biorthogonal multiwavelets that possess GMP’s and employ the
proposed initialization technique can perform better than the pop-
ular scalar wavelets such as Daubechies'D8 wavelet and the D(9/7)
wavelet, and some of these multiwavelets achieved this with lower
computational complexity.

Index Terms—Good multifilter properties, image compression,
multiwavelets, preanalysis and post-synthesis filtering, wavelets.

I. INTRODUCTION

RECENTLY, much interest has been generated in the study
of multiwavelets[1]–[4], [6], [12], [15], [21], wheremore

than onescaling function and mother wavelet are used to rep-
resent a given signal. However, unlike scalar wavelets in which
Mallat's pyramid algorithms [10] can be employed directly,
the application of multiwavelets requires that the input signal
to be first vectorized (which is a problem popularly known
as multiwavelet initializationor prefiltering). To address this
problem, Xiaet al. [21], [22] have proposed new algorithms
to compute the initial multiwavelet transform coefficients by
using appropriate pre- and post-filtering techniques. Later,
Strelaet al. [15] investigated the construction of “constrained”
multiwavelets for filtering two-dimensional (2-D) signals and
applied them to image denoising and image compression. Liang
et al. [9] have also directly applied the GHM multiwavelet [3]
to image coding.

In spite of the above research works, there remain a few areas
of multiwavelet research that require further investigation for
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their successful applications, typically in image compression.
First, it is observed that there is a lack of “good” (the definition
of which will be given in Section III) multiwavelets that will
give high energy compaction, which is critical for image com-
pression. Second, there is a need to devise an efficient, robust,
and compact representation framework for multiwavelet initial-
ization using any given multiwavelet. Based on the above ob-
servations, we are motivated to develop the following solutions:

1) a set of criteria foranalyzing“good” multiwavelets;
2) a method toapply simple but robust and nonredundant

preanalysis and post-synthesis multirate filtering for mul-
tiwavelet initialization;

3) construction of families of “good” orthogonal and
biorthogonal multiwavelets.

In this paper, we will only focus on solutions 1) and 2). Together,
they provide a general approach for the design of “good” multi-
wavelets and the application ofanymultiwavelets, particularly
to image compression. The solution (3) is presented in two other
papers [12], [17].

The rest of the paper is organized as follows. Section II
provides a brief overview of multiwavelets. Section III estab-
lishes two proposed concepts: the idea of an equivalent scalar
(wavelet) filter bank associated with a multiwavelet system and
the notion of “good multifilter properties” (GMP’s). Section IV
introduces the proposed general framework for multiwavelet
initialization. A thorough analysis of the proposals is then
carried out in Section V, and the conclusions are drawn in
Section VI.

II. PRELIMINARIES OF MULTIWAVELETS

For a multiresolution of multiplicity , there are
scaling functions , which are usually written as a
vector that satisfies the matrix refinement
equation (MRE)

(1)

where is a matrix lowpass filter. The corresponding multi-
wavelet is given by

(2)

where is a matrix highpass filter. We will also call and
multifilters. Several properties of scaling vectors arising from
matrix finite impulse response (FIR) filters, such as orthonor-
mality, stability, smoothness, and good approximation property,
have been studied extensively (see, e.g., [2], [6], and [15]).
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In the Fourier domain, let thematrix frequency responsesfor
be denoted by , respectively, i.e.,

and

(3)
where . The orthogonality conditions can now be ex-
pressed as

(4)

(5)

and

(6)

where* denotes complex conjugate transpose, whereasand
are the identity and null matrices, respectively.

III. A NALYSIS OF MULTIWAVELETS WITH GOOD FILTER

CHARACTERISTICS

In this section, we first introduce the concept of anequiva-
lent scalar (wavelet) filter bank systemto sufficiently represent
the multiple-input multiple-output relationship of a given multi-
wavelet system. We then analyze the good filter properties of the
equivalent scalar filter system, which in turn are expressed di-
rectly in terms of GMP’s of the associated multiwavelet system.

A. Multifilters and Equivalent Scalar Filter Bank System

Consider the multiple-input multiple-ouput (MIMO)
relationship of a multifilter system as depicted in Fig.
1(a). In the context of a multiwavelet system with mul-
tiplicity , we know that the output vector streams

are given by the convolution of the
input streams with the matrix filter
impulse response . Fig. 1(b) illustrates an equivalent and
sufficient framework, from an input-output filtering viewpoint,
that replaces the multifilter with a cascade of a multiplexer,
a system of equivalent scalar (wavelet) filters ,
and downsamplers. The remaining problems follow: “What
is the relationship between the equivalent scalar filters and
the associated multifilter system, and what is the multiplexing
operator?” In this subsection, we will show that theequivalent
scalar filters are, in fact, thepolyphases of the corresponding
multifilter. The second question on multiplexer will be illumi-
nated further in Section IV.

Consider again the MIMO relationship of a multifilter system
as portrayed in Fig. 1(a). Let

, and . From the definition
of matrix filter convolution with vector inputs, we know that
the vector outputs are given by

(7)
Suppose now we multiplex the multiple input streams

to produce a single stream
via a multiple-input-single-output (MISO) operator ,
as depicted in Fig. 1(b). This allows us to filter the data

Fig. 1. (a) Multiwavelet filter bank system with multiplicityr. (b) Equivalent
r scalar filter bank system with a multiplexerMUX and downsamplers.

stream independently using each of thescalar (wavelet)
filters to be followed by
downsampling with a decimation factor of, such that

(8)

By comparing (7) and (8), the following relationships can be
established:

i) The operator , which multiplexes the multiple
input streams into a scalar data stream, is defined as

(9)
ii) The equivalent scalar filter bank system is related to

the multifilter by

(10)
Denote .

From (10), we can show that

(11)

where the th polyphase of the th equivalent scalar filter is
given by for all .
This clearly shows that we can sufficiently represent any given

-channel multiwavelet system of multiplicity with
systems of equivalent scalar filters, each consisting of
polyphases. Typical multiwavelet applications have ,
and the scalar filters described here can be either the lowpass

filter or the highpass filter.
In the above, we have relied on the theory of polyphases of

block or vector-valued filter banks [14], [19], [21] to obtain the
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equivalent representation. It should be noted that Xia [21] also
proposed an equivalent representation for multiwavelet systems.
The difference between his representation and ours lies in his
incorporation of the preprocessing filter in his representation.

From (11), the relationship between the frequency responses
of the multifilter and its equivalent scalar filters can be expressed
as

(12)

where

B. Good Multifilter Properties

The main aim of this subsection is to propose a set of new
design criteria for multiwavelets called “good multifilter prop-
erties” (GMP’s). A very interesting property of the relation-
ship that was established earlier is that all the transfer function
characteristics of the multiwavelet system can now be analyzed
conveniently by designing appropriate equivalent scalar filters.
In the following, we will formulate some eigenvector proper-
ties of matrix filters corresponding to multiwavelets that possess
GMP’s by first defining the notion of GMPs for the equivalent
scalar filters.

Definition 1: A given multiwavelet system with multiplicity
is considered a good multifilter of GMP order if its

equivalent lowpass and highpass scalar filtersand possess
the following properties:

• ;
• ;
• ;

for all , where the superscriptdenotes the th
derivative, and .

In fact, the above criteria for good filters follow directly from
the fact that and are the scalar lowpass
and highpass filters, respectively. Taking theth derivative on
both sides of (12), the conditions for good filter characteristics
can now be expressed explicitly for a multifilter system as

•

•

•

(13)

From the above relationship, we can easily verify the fol-
lowing proposition:

Proposition 1: Suppose that an orthogonal multiwavelet
system has a GMP order of at least ; then, we have

i) ;
ii) ;
iii) .
In general, for any orthogonal multiwavelet system with a

finite matrix response, satisfies Condition E and has a
vanishing moment of at least order one, i.e., there exists a vector

such that

(14)

Note that Condition E means all eigenvalues of are strictly
less than one, except for a simple eigenvalue 1 [13]. It also en-
sures that the solution of the MRE (1) has a unique solution up
to a constant multiple.

By setting in the relation (4), left multiplying it with
and applying (14), we have

(15)

Similarly, from (6) and (14), we can derive

(16)

By combining (1) and the definition of Condition E, we can get

(17)

up to a constant (i.e., is parallel to ). Therefore, if a mul-
tiwavelet system has a GMP order of at least , then, up
to a constant

(18)

It is noted that (18) imposes a rather restrictive condition on the
design of multiwavelets. However, it is well known that we can
perform a change of basis by applying a similarity transforma-
tion to the multifilters. Thenewmultifilter frequency responses
are given by

and (19)

and the associatednewmultiscaling function vector and multi-
wavelet vector are defined as

and (20)

respectively.
Note that such a similarity transformation still guarantees

that satisfies the PR criteria (4)–(6). Therefore, we
can say that an orthogonal multiwavelet system
possesses a GMP order if there exists an orthog-
onal matrix such that possesses a GMP order

. In fact, such an orthogonal matrix is completely
determined by the moment (zero order) of multiscaling function
vector such that is parallel to vector .

Finally, for , we have the following proposition.
Proposition 2: A given orthogonal multiwavelet system of

multiplicity has a GMP order of at least iff
is singular.

Proof—Sufficient Part: Choose an orthogonal matrix
such that the vector is parallel to .
Clearly, from (15) and (16), we know that the GMP order
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components and are at least . In addition, suppose that
; then, from (14) and (15), we have .

On the other hand, since is singular and

(21)

we have , which implies that
. Hence, . The proof for the necessary

part is obvious from Proposition 1.
It is noteworthy that a similar concept of “balanced multi-

wavelets” were introduced in [8], where the concern was to
achieve “good balance” of thescaling functions. This amounts
to imposing condition i) in Proposition 1. Our concept of GMP’s
goes further in that we further impose condition ii) in Proposi-
tion 1 with the aim of preventing “DC leakage” and the checker-
board artifacts in the reconstructed images [14, p. 368]. Some
results verifying the importance of this design criterion will be
shown later.

IV. A PPLICATION OFDISCRETEMULTIWAVELET TRANSFORMS

The section focuses on how to efficiently and effectively
apply discrete multiwavelet decomposition and reconstruction
to a given signal. In particular, we attempt to address the
important issue ofmultiwavelet initialization or prefiltering,
which concerns the generation of multiple (vector) input
streams from a given scalar source stream. Several proposals
(e.g., [21] and [22]) for prefiltering have preceded this paper.
Our approach, however, is significantly different. We propose
to develop a generalized paradigm for discrete multiwavelet
transforms, which works well with any given multiwavelet
system, regardless of whether it possesses GMP’s or not. In
addition, the proposed multiresolution framework also em-
bodies the following properties: orthogonality, low complexity,
and compact (or nonredundant) representation of the input
signal. For simplicity of exposition, but without loss of gener-
ality, we consider only orthogonal multiwavelet systems with
multiplicity for the rest of the paper, unless mentioned
otherwise.

A. Proposed Preanalysis and Post-Synthesis Multirate
Filtering

A multifilter system needs to operate on vector input
streams. The problem boils down to how we can obtain
the vector inputs from a given
scalar input signal . For the case of multiplicity

, we essentially pair up the adjacent data of the
scalar input stream to generate the vector input stream

. This is analogous
to what happens in the scalar case where the common and
popular choice for approximating
is the one-point quadrature [16], where . Here,
we assume that elements ofare locally smooth, and hence,

with for some real constant
. Using (19), (21), and the assumption on , we have

. This allows us to derive the preanal-
ysis and post-synthesis operators as follows:

i) Preanalysis operator (PRE):

ii) Post-synthesis operator (POST):

where the orthogonal matrix has two possible forms:

or (22)

where when , or, otherwise,
for .

A natural question now arises as to which orthogonal ma-
trix should be used for a given multiwavelet system. In order
to help us determine the better prefilter, we have investigated a
number of other filter design criteria and concluded that the fol-
lowing measure of deviation from the ideal “brickwall” lowpass
filter is both reliable and consistent.

where and are the equivalent scalar lowpass filters
associated with the transformed multiwavelets. We select the
matrix that gives the smaller value of.

B. Proposed Generalized Framework for Discrete
Multiwavelet Transforms

With prefiltering, we are now able to generate the multiple
input streams , which form the initial expansion coef-
ficients of a given multiwavelet system. For multiscale analysis
of a signal, we can employ Mallat's multiresolution algorithm
[10], which recursively decomposes and critically downsamples
the smooth (approximation) version of the signal at each scale.
Themultiwavelet decomposition algorithmis given as

and

(23)

Essentially, we are performing the lowpass and highpass fil-
tering with the matrix QMF’s and , respectively. The syn-
thesis stage, which recombines the approximation and detail in-
formation of the signal, can then be carried out using themulti-
wavelet reconstruction algorithm

(24)
Fig. 2 illustrates the proposed generalized framework for

discrete multiwavelet decomposition and reconstruction of a
2-D signal using separable transformation along each dimen-
sion. The integration of the proposed multirate preanalysis and
post-synthesis filters with Mallat's multiscale algorithms is
also shown. Clearly, the overall framework provides a compact
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Fig. 2. Integration of the proposed multirate preanalysis (post-synthesis)
filtering for nonredundant discrete multiwavelet decomposition of a 2-D image.
The discrete multiwavelet reconstruction is obtained by reversing the above
process and with the preanalysis processes replaced by the post-synthesis
processes.

(nonredundant) representation of the original signal, which
is critical for image compression. Note that the row-wise
(column-wise) preanalysis filtering is only applied before
the first level of row (column) decomposition. In general,
an -level multiwavelet decomposition of a 2-D image will
produce subbands. Such a subband structure closely
resembles that of a full wavelet-packet decomposition using
scalar wavelets. In spite of the similarity in their subband
structures, we will show later that the image compression
performance using multiwavelets is more superior to that using
scalar wavelet packets.

V. PERFORMANCEANALYSIS AND COMPARISON

This section investigates our proposals by comparing them
with some existing methods and filters. In the following
simulations, we will only concentrate on applying the proposed
techniques to image compression, although we believe that such
a framework should also produce encouraging results in other
applications such as image denoising and enhancement. We
will first analyze the effectiveness, efficiency, and robustness
of the proposed prefiltering technique. Image compression
results using various prefilters are compared. This is followed
by a comparison of image compression performances using
different multiwavelets and scalar wavelets. The application
of the proposed generalized framework for multiwavelets and
the use of wavelet-packet for scalar wavelets are investigated.
For fair comparisons, the same still image codec (SPIHT) by
Said and Pearlman [11] is used1 throughout for compressing
different images at various bit rates. Both the objective measure
of peak signal-to-noise ratio (PSNR) and subjective evaluation
of the quality of reconstructed images are presented.

A. Examples of Multiwavelets

In our image compression experiments, both orthogonal and
biorthogonal scalar wavelets and multiwavelets were used for
comparison. For the orthogonal case, the following four 4-tap
orthogonal multiwavelet filters are chosen for their respective
properties:

1Similar relative performance comparisons were also observed using other
image codecs such as [18].

Fig. 3. Magnitude responses of the equivalent scalar filters associated with
orthogonal multiwavelets GHM, CL4, JOPT4, and SA4.

i) GHM multiwavelet [3] has symmetic scaling functions
and an approximation order of 2.

ii) Chui and Lian's (CL4) multiwavelet [2] has the highest
possible approximation order of 3 for its filter length.

iii) Jiang's multiwavelet (JOPT4) [7] has optimal time-fre-
quency localization for its filter length.

iv) Our proposed multiwavelet (SA4) [12] has an approxi-
mation order of 1 and a GMP order of .

The CL4, JOPT4, and SA4 multiwavelets belong to a class
of multifilters which scaling and wavelet functions are sym-
metric/antisymmetric pairs [2]. For 4-tap multiwavelets with
GMP order of at least , the lowpass filter matrices

satisfy

for , where
diag . For example, the SA4 multiwavelet is

obtained when . The magnitude responses of
the equivalent scalar filters associated with each of the above
multiwavelets are plotted in Fig. 3. It is also clear from the plot
that only SA4 possesses GMP’s, which are manifested in the
magnitude responses as smooth decays to zero at .

For the biorthogonal case, we use the class of sym-
metric-antisymmetric biorthogonal multiwavelets (SABMW’s)
constructed in [17] to have GMP’s. In particular, we will
employ the length 4/4 BSA(4/4) filter, the length 6/6 BSA(6/6)
filter, and the length 7/9 BSA(7/9) filter for comparing with the
popular scalar filters D(7/9) and V(10/18) [20].

B. Performance Comparison of Prefiltering Techniques

The main aim of this subsection is to compare and contrast
the proposed prefilter against two other existing prefilters. The
prefilters involved are

i) Hardin and Roach's prefilter (HRP) [5], which is orthog-
onal and approximation-order preserving;

ii) the Xia et al.prefilter (XP) [21], which is interpolatory;
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TABLE I
COMPARISONS OF PSNR VALUES (IN

DECIBELS) OF DIFFERENTIMAGES AT DIFFERENTCOMPRESSIONRATIOS

(CR) USING THE GHM MULTIWAVELET BUT WITH THREE DIFFERENT

PRE-FILTERING METHODS

TABLE II
COMPARISONS OFPSNR VALUES (IN DECIBELS) USING DIFFERENT

IMAGES AT DIFFERENTCOMPRESSIONRATIOS (CR) FOR THEORTHOGONAL

MULTIWAVELET FILTERS: i) GHM; ii) CL4; iii) JOPT4; iv) SA4
MULTIWAVELET WITH GMP ORDER (1; 2; 1). THE SCALAR FILTER D8 AND A

SPECIAL WAVELET-PACKET IMPLEMENTATION OF D8, DENOTED BY DP8 ARE

INCLUDED HERE FORBENCH-MARKING PURPOSES

iii) our proposed prefilter (TP), which uses a simple orthog-
onal transformation.

Since the objective is to compare the significance of different
prefilters, we have adopted the popular GHM multiwavelet as
the common2 multifilter in our simulations. However, it should
be emphasized that the proposed TP framework is robust enough
to work well with any given multiwavelet.

Fig. 4. (a) Original Boat image. Reconstructed images at compression ratio
32:1 using (b) D8 (30.44 dB), (c) GHM (30.04 dB), (d) CL4 (30.85 dB), (e)
JOPT4 (30.59 dB), and (f) SA4 (30.87 dB).

Table I illustrates the PSNR results of the three prefiltering
schemes over a wide range of compression ratios. It can be
observed that the TP and HRP methods have comparable per-
formance, whereas both methods consistently perform better
than the XP method. However, it should be pointed out that the
TP method has lower computational complexity than the HRP
method. For the case of GHM multiwavelet, the TP method
needs only one matrix-vector multiplication as compared with
the HRP method, which requires two such multiplications.
Furthermore, for the class of symmetric-antisymmetric multi-
wavelets and from (22), . Here, if
the normalization constant of can be absorbed into the
filters for the first level of decomposition and the first level
of reconstruction, then the TP method requires practically no
multiplication and only two additions for each input vector.

2The choice of GHM multiwavelet is also motivated by the existing prefilters
whose designs are based on GHM.
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TABLE III
IMAGE COMPRESSIONPERFORMANCECOMPARISONS OFPOPULAR BIORTHOGONAL SCALAR WAVELET FILTERS [D(7/9), V(10/180],AND THREE

SYMMETRIC-ANTISYMMETRIC BIORTHOGONAL MULTIFILTERS BSA (4/4), BSA (6/6),AND BSA (7/9) CONSTRUCTED IN[17] WITH GOOD MULTIFILTER PROPERTIES

C. Performance Comparison of Scalar Wavelet and
Multiwavelet Filters

This subsection aims to demonstrate the importance of
GMP’s as a set of new design criteria for constructing multi-
wavelets, particularly for image compression. We first compare
in the orthogonal settings where the four multiwavelet filters
described in Section V-A were compared. For fair comparisons
and to illustrate the robustness of the proposed framework,
we used the TP technique as the common prefilter for all
multiwavelets. We have also included both Daubechies' 8-tap
(D8) scalar wavelets for benchmarking purposes.

Table II compares the PSNR performances of different or-
thogonal wavelet filters for a number of images and bit rates.
Among the three length-4 symmetric-antisymmetric orthogonal
multiwavelets, it is clear that SA4 generally outperforms both
JOPT4 and CL4. It is also worth noting that the performance
of CL4 is very close to that of SA4. Such results are expected
as the lowpass magnitude responses of CL4 are close to zero
(about 0.051) at (see Fig. 3). That is, CL4 has “near”
GMP’s. In addition, SA4 can outperform scalar wavelets D8
by more than 0.54 dB. These results are very encouraging as
the computational complexity of SA4 is only half of that of
D8. The subband structure of SA4 resembles that of a special
case of wavelet-packet decomposition using scalar wavelets. For
fair and comprehensive comparisons, we also applied D8 using
wavelet-packet decomposition with the same subband structure.
The results are shown under the heading “DP8” in Table II.
While DP8 performs better than D8 for “busy” images such as
Barbara, its performance is still worse than that of SA4.

Fig. 4 depicts the subjective reconstructed image quality of
the standard Boat image at a compression of 32:1 using different
orthogonal wavelet filters. It is observed that the image quality
corresponds well with the objective measure of PSNR. A careful
comparison, however, reveals some distinct differences among
the reconstructed images. For example, the white mast at the top
center of the image is clearly missing or severely distorted in the
images, except for those reconstructed using CL4 and SA4.

It is also noteworthy that SA4 can achieve very competitive
compression performances even though it has lower approx-
imation order than both GHM and CL4 and worse time-fre-
quency localization than JOPT4. This reflects the significance
of GMP’s as a useful set of design criteria for the construction
of multiwavelets targeting image compression applications.

While SA4 performs well against other length 4 orthogonal
multiwavelets and D8, it performs worse than the popular
biorthogonal scalar filter D(9/7). To address this problem, we
generalized GMP’s to the biorthogonal multiwavelet case in
[17] and constructed symmetric-anitisymmetric biorthogonal
multiwavelets with GMP’s and use them for comparisons
against D(9/7). Table III shows the image compression per-
formance comparisons of popular biorthogonal scalar filters
D(7/9) and V(10/18) [20] and three SABMW filters BSA(4/4),
BSA(6/6), and BSA(7/9). It should be noted that BSA(4/4) out-
performs D(9/7), requiring only two thirds of the computational
complexity for D(7/9) [17], whereas BSA(6/6) outperforms
V(10/18) with 11/14 of its computatonal complexity.

VI. CONCLUSION

A generalized paradigm for the analysis and application of
discrete multiwavelets to image compression was presented
in this paper. We introduced the idea of anequivalent scalar
(wavelet) filter bank system, which provides a sufficient repre-
sentation of the multiple-input multiple-output relationship of
a given multiwavelet system. We showed that theequivalent
scalar filters are, in fact, thepolyphases of the corresponding
multifilter, and the multiplexer operation actually motivated the
development of the proposed pre-filtering framework. The no-
tion of good multifilter properties(GMP’s) was then proposed
as a new tool for analysis, construction, and application of
good multiwavelets for image compression. We also presented
the necessary and sufficient conditions for determining the
existence of GMP’s, explained the eigenvector properties of
the matrix refinement mask associated with multiwavelets
possessing GMP’s, and defined the GMP order of a given mul-
tiwavelet system. Next, we proposed a generalized preanalysis
and post-synthesis framework for multiwavelet initialization
and showed how they can produce an integrated solution for
multiresolution image analysis. The proposed framework is
not only robust to work well with any given discrete mul-
tiwavelets, but it is also orthogonal, low in complexity, and
provides a compact (nonredundant) representation of the input
signal. Finally, extensive simulations in image compression
verified the significance of GMP’s and the efficiency of the
proposed framework for discrete multiwavelet transforms.
More details about our work can be obtained via the Web at
http://wavelets.math.nus.edu.sg/projects/multiwavelets/.
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