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Abstract— In this paper, a complete compression and
decompression algorithm for low bit rate still image cod-
ing is presented. It is a wavelet-based technique which
first decomposes an image hierarchically into oriented sub-
bands, and then encodes the wavelet coeflicients using a
zerotree data structure similar to that proposed by Shapiro
[14-16]. We then incorporate four different enhancements
to this original method to further improve both the ob-
jective measure of peak signal-to-noise ratio (PSNR) and
the subjective perceptual quality of the reconstructed im-
ages. First, the optimum initial threshold is determined
adaptively. Second, a “Quad-EZW?” method which further
decomposes the higher-frequency subbands is employed.
Third, a method for predicting the higher-frequency co-
efficients is applied. Finally, a novel technique to translate
the reconstruction values is introduced. With these en-
hancements, some performance improvements of up to 3
dB were achieved. It also totally outperforms JPEG, the
current international standard for still image compression,
especially at low and very low bit rates.

Keywords— wavelet transform, zerotrees, adaptive initial
threshold, Quad-EZW, prediction of high-frequency, opti-
mum translational factors, low bit rate compression.

I. INTRODUCTION

HE proliferation of digital technology has not only
accelerated the pace of development of many image
processing software and multimedia applications, but also
motivated the need for better compression algorithms.
Traditional transforms such as the discrete cosine trans-
form (DCT) were employed successfully in JPEG [11],[19]
(for lossy, continuous-tone gray scale or color still image
compression), and in MPEG [8] (for motion picture com-
pression). However, their inherent blocking artifacts are
objectionable at higher compression ratios. In the past
few years, the use of the wavelet transform for compression
has been gaining wide popularity. The main advantages
of wavelet-based methods lie in their energy compaction
property and multiresolution decomposition capability.
Subband coding (SBC) is a waveform coding method
first introduced by Crochiere et al. [7]in 1976 for medium
rate speech coding. Recently, this technique has been ex-
tended to the coding of images and video sequences. The
basic idea of subband coding is to split the spectrum of
an image into non-overlapping bands of different resolu-
tions (analysis stage). Since each subband has a reduced
bandwidth, they may be downsampled. A more optimal
bit allocation strategy can now be employed by assigning
different number of bits to exploit the statistical proper-
ties of each subband. This allows the coding errors to be
distributed across the subbands in a more visually opti-
mal manner. Furthermore, different coding techniques can
also be used for different subbands to reduce statistical re-
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dundancies more efficiently. Reconstruction is achieved at
the decoder end by adding upsampled and appropriately
filtered versions of the subimages (synthesis stage).

The notion of using subband decomposition for image
coding via a quadrature mirror filter (QMF) bank was
first applied by Woods and O’Neil [20] in 1986. From
then on, many variations that exploited this hierarchical
tree structure were investigated. Shapiro [14],[15],[16] pro-
posed a very economical means of representing insignifi-
cant information across scales by an elegant data structure
called the zerotrees. He obtained very good image quality
(PSNR = 30.23 dB, 0.125 bbp; PSNR = 33.17 dB, 0.25
bbp)!. Said and Pearlman [12],[13] extended this zerotree
concept to a more general perspective by coding the state
transitions instead of the actual states of the coeflicients.
A slight performance improvement (PSNR = 33.69 dB,
0.25 bpp) was obtained. Xiong et el.[21], introduced an
approach for jointly optimizing both scalar quantization
and tree-based quantization of pyramidal image decom-
positions (PSNR = 28.76 dB, 0.25 bpp, 256x256 LENA).
Banham and Sullivan [2] incorporated a quadtree segmen-
tation based solely on the wavelet coeflicients to code the
image (PSNR = 32.17 dB, 0.54 bpp). Chang and Zakhor
[4],[5],[6], and Taubman and Zakhor [17],[18] extended this
multiresolution property to develop a scalable video com-
pression scheme. By restricting the coding scheme to 2-D
still images, very good results (PSNR = 30.96 dB, 0.125
bpp; PSNR = 34.12 dB, 0.25 bpp) were obtained.

This paper is organized into two main parts. The first
part (Section IT) presents an overview of Shapiro’s Embed-
ded Zerotrees of Wavelet Coefficients (EZW) algorithm
with slight variations. The second part is divided into
four sections (Section III - VI), each explaining a differ-
ent enhancement method of the EZW technique. Section
VII concludes this paper with suggested future directions.
Subjective improvements using the above enhancements
are demonstrated in Section VIII.

II. THEORY OF EZW: A REVIEW

EZW is a new data structure proposed by Shapiro
[14],[15],[16] for 2-D still image subband coding using
wavelet transform. It was shown to produce excellent com-
pression performance, both in terms of statistical peak
signal-to-noise ratio (PSNR) and subjective human per-
ception of the reconstructed image quality. It totally out-
performs JPEG especially at low and very low bit rate
compressions. The following subsections briefly outline
the basic features and motivations of EZW for image com-

LAIl PSNR values quoted in this section is for the luminance com-
ponent of a 512x512 LENA image, unless specified otherwise.
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pression. A more elaborate algorithmic discussion with
pseudo-codes and an example for both the encoder and
decoder can be found in [10].

A. Basic Features of EZW Compression Method

As in most lmage compression methods, the EZW
method consists of three main stages. They are the trans-
formation stage, EZW with implicit quantization stage,
and entropy coding stage.

In the transformation stage, a separable discrete 2-D
wavelet decomposition is applied to allow a multiresolu-
tion analysis of the image. The first level of decomposi-
tion splits the image into four subbands consisting of one
smooth (LL) subband, and three detail subbands - verti-
cal (HL) subband, horizontal (LH) subband, and diagonal
(HH) subband. Subsequent levels of decomposition fur-
ther split the LL subband into four subbands, thus form-
ing a hierarchical tree of directionally-sensitive subbands.
Inherently the wavelet decomposition concentrates more
than 95% of the total energy in the LL subband alone
and less than 5% is distributed among all the detail sub-
bands. This already suggests data compression because
by just coding the few coefficients in this LL subband, one
can preserve and transmit most of the information to the
receiver/decoder. However, discarding the low-energy co-
efficients in the detail subbands will correspond to throw-
ing away the high-frequency portion of the signal, and this
is manifested as image blurring. This artifact motivates a
more efficient and economical way for selecting coefficients
that are deemed important for good reconstruction from
both the smooth and detail subbands.

The second stage focuses on this critical selection pro-
An efficient compression algorithm will have to
perform a very good job in selecting the significant
coefficients? across all the scales. In doing so, the en-
coder must send both the positions and values of the sig-
nificant coefficients to the decoder. Notice that such po-
sitional information of the significant coefficients can be
sent efficiently if we can transmit the positions of the in-
significant coeflicients with minimal bits. EZW provides
an economical zerotree data structure that predicts and
tmplicitly encodes the positions of these insignificant coef-
ficients across the scales. With the formation of zerotrees,
many bits are saved for encoding the values of the signif-
icant coefficients. Furthermore, EZW does not adopt any
explicit quantization technique, but instead, the precision
levels of the significant coefficients are successively refined
via multiple passes by comparing with certain thresholds.
An initial threshold is chosen for the first round and its
value is successively halved after each round. This suc-
cessive approximation approach allows the generation of
a single embedded bit stream that supports progressive
transmission - a feature particularly useful for large im-
age database browsing. In other words, such an embedded
bit stream allows the encoding and the decoding processes
to be stopped at any point without indicating the point
of termination in the final reconstructed image. From a

CEss.

2Those coefficients which have higher energy content and are
deemed to contain more information about the image.

practical point of view, this feature is also found useful
in many rate-constraint and distortion-constraint appli-
cations such as photo-journalism.

The entropy encoding stage consists of an adaptive-
model arithmetic encoder. By applying successive approx-
imation, EZW coding produces only short alphabet input
symbols to the arithmetic encoder. This allows the adap-
tive model to track changing symbol probabilities faster
and learn quickly to improve its overall compression per-
formance. Generally, arithmetic coders are more robust
and can give a better coding performance as compared
to Huffman coders which do not perform well for skewed
input probability densities.

B. Parent-Child Relationship of Subbands

An interesting characteristic of recursive four-subband
decomposition is the formation of spatial orientation trees
as depicted in Fig. 1. Consider the shaded pixels in sub-
bands HL3, HL2 and HL1, which form a spatial orienta-
tion tree (TREE) with a parent node at HL3. The cor-
responding four pixels with the same spatial orientation
at HL2 will be the children (CHILD) of this parent node
at HL3. Similarly, all the (2x2) pixels at HL2 and all the
(4x4) pixels at HL1 are the descendants (DESC) of the
same parent node at HL3. Notice also that a tree formed
with a node at the base band LL3 (BASE) will have three
main subtrees with nodes at HL.3, LH3 and HH3, as shown
by all the boxed pixels in Fig. 1 below. Mathematically,
these inter-relationships can be written as:

DESC(n) = U
{n} U DESC(n)
{0,1,2,...,MN — 1}

TREE(m) (1)

TREE(n)
U TREE(n)
neBASE

for all coefficients n of an M x N image.

(2)
3)

C. Formation of Zerotrees and A Priori Scanning Order

As described in Sec. II-B, the subbands of a decom-
posed image can be represented by spatial orientation
trees rooted at the base band. EZW algorithm exploits
this feature by introducing a data structure called zerotree.
As pointed out in Sec. II-A, the bit budget should be spent
economically to encode as many significant coeflicients as
possible, and ideally no bits are used to encode the in-
significant coefficients. With this idea in mind, zerotrees
provide an efficient way in representing these insignificant
coefficients with minimal bits. We define a spatial orien-
tation tree as a zerotree (with a root at coefficient ¢,) if
each element of the tree is deemed insignificant (smaller
than the current threshold, 7;). In addition, a zerotree is
formed only if it is not already part of a previously formed
zerotree with root at ¢, _., in the same pass with T' = T,
as described below:

ZTR(CH) vkeTREE(cn)|ck| <=T;, and
Cn € ZTR(Cn—m)|T:Ti: mc Z+

(4)
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Fig. 1. Parent-child relationship of subbands in a 3-scale hierarchi-
cal decomposition.

where ¢, _,, is scanned before ¢, in the same pass with
T = T,. It is obvious that a lot of bits can be saved if
all the completely predictable insignificant coefficients of
this zerotree are sent to the decoder with only one ZTR
symbol at the position of the zerotree root.

The viability of forming zerotrees is based on the hy-
pothesis that if a wavelet coefficient at a coarse scale is
insignificant, then all coefficients of the same orientation
in the same spatial location at finer scales (i.e., the de-
scendants) are also likely to be insignificant. This is di-
rectly related to the inherent energy packing property of
wavelet decomposition. In order to be consistent with this
hypothesis, an a priori scanning order is employed to scan
the higher energy coefficients at the coarser scales first.
Fig. 2 shows the scanning pattern for a 3-scale decompo-
sition. It is obvious that no child coefficient is scanned
before its parent.

D. Dominant and Subordinate Passes

In the following sections, we denote A; as the state of A
in the ith round of the EZW process, where : = 1,2,3,... .
To begin, let us define the ith round of passes R; as con-
sisting of a dominant pass DP;, and a subordinate pass
SP;. In the beginning, all wavelet coeflicients ¢, are put
into a list called the dominant list, DL;_;, while another
list called the subordinate list, SL;—;, is empty. Once
the initial threshold 7T;_; is determined, the first round of
passes R;—; will begin. The dominant pass DP; acts as
a discriminating process to determine the significance of
each ¢, with respect to the current threshold, 7;. It is
considered significant if its magnitude |c,| is larger than
T;, and insignificant otherwise. If ¢, is significant, its
sign is determined as either positive (POS) or negative
(NEG). The encoder encodes this sign and sets its value
in DL; to zero to facilitate the formation of ZTR in sub-
sequent rounds. Its magnitude |c,| is then transfered into

LL3| HL3
— HL,
LH 31 HH 4
s HL
LH,/| ™HH,

LH HH ,

Fig. 2. A priori scanning order of subbands for both the encoder
and decoder of EZW.

the subordinate list, SL;. However, if ¢, is insignificant,
its descendant coeflicients are checked for a zerotree root
(ZTR) as explained earlier. If the zerotree formation fails,
then this ¢, is coded as an isolated zero (IZ). Notice that
zerotrees cannot be formed in the finest scale (FINEST) of
the decomposition. A special zero (Z) code is used to re-
place both IZ and ZTR at this scale. This is done to reduce
the number of different possible symbols to be arithmetic
encoded, thus further improving the overall compression
performance. As a result, a DP; will give out only three
or four different possible codes as follows:

POS(cn) len| > T; and ¢, >0 (5)
NEG(cn) len]| > T; and ¢, <0 (6)
ZTR(cy) vkeTREE(cn)|ck| <=T;, and
en € ZTR(cn—m)|r=T;, mE ZT (1)
1Z(cn) len| <=T; and
e DESC(e.)lkl > T (8)
Z(cy) len| <= T; and e, € FINEST. (9)

After all ¢, in the DL; are discriminated, this DP; will
end and the SP; begins. Now, each significant coefficient
|en| in SL; will have a reconstruction value as will be seen
by the decoder. By default, an insignificant coefficient
will have zero as the reconstruction value. As a simple
case, consider a coefficient with an actual value A that is
to be successively approximated via the rounds of passes
(see Fig. 3). After the DP;, the center of the uncertainty
interval of XY (i.e., M) is chosen as the reconstruction
value having a certain precision. Notice that the uncer-
tainty interval XY before the SP; is equal in magnitude to
the current threshold T;, since T;;1 = %TZ The subordi-
nate pass aims to further refine the precision of the recon-
struction value. During a SP;, the uncertainty interval is
halved (i.e., | XM| = |MY| = |XY]|/2), by dividing XY into
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two halves. The new reconstruction value is determined
as the center of this smaller uncertainty interval (i.e., R
or Ry ) depending on whether |c,| lies in the upper (UPP)
or lower (LOW) half, respectively. In this example, since
A lies in the lower half, the new reconstruction value will
be Ry. It can be seen that the uncertainty interval now
is halved and the reconstruction value is closer to A than
before this SP;. As a result, a SP; generates only two

different possible codes as summarized below:

UPP(cn) |en| lies in the upper half of the
uncertainty interval, MY (10)
LOW(cy) |en| lies in the lower half of the

(11)

uncertainty interval, XM.

Actual Value

Ry M Ry, Y

Fig. 3. Uncertainty interval of the reconstruction value as seen by
the decoder. |XY]| is equal in magnitude with 7; and it is the
uncertainty interval for a reconstruction value M before the SP;.
After the SP;, the uncertainty interval is halved to either |[XM]|
or [MY| and the new refined reconstruction value is either Ry,
or Ry, respectively.

In this manner, the precision of the reconstruction
value can be doubled after each SP;. After all |c,]| in
SL; are refined, the current SP; will end. The next
round of passes will begin with DPF;;; and followed by
SP; ;1. This process of selection of significant coeflicients
in DP;;1 and refinement of uncertainty intervals in SP;;
will continue until the bit budget is exhausted (rate-
constrained), or a certain target distortion is achieved
(distortion-constrained). It is apparent that the preci-
sion gets higher and higher approaching the exact value
as ¢ increases via successive approzimation, which is rather
similar in spirit to bit-plane encoding.

E. Reordering/Prioritization Protocol

By using orthogonal filter banks, any error introduced
in quantizing the wavelet coeflicients in the transform do-
main will eventually translate to a proportional amount
of error in the reconstructed (spatial) domain. Therefore
in order to optimize the utilization of bits, the bit budget
should be used carefully to code those coefficients with
higher information® content (in this case, those higher
energy coefficients). For example, suppose the decoder
receives a transform coeflicient of value |c,|, the mean
square error will decrease by |c,|?/N, where N is the im-
age size. This concept motivates the need to reorder the
significant coeflicients in decreasing order of magnitude.

3 Information provides an indication as to how much reduction in
distortion is achieved after receiving that part of the coded message.

EZW implements this idea by reordering the significant
coefficients in the subordinate list SL;, before the refine-
ment process is carried out in the subordinate pass SF;.
Notice that this reordering process cannot be done indis-
criminately as the decoder will be unable to keep track
of the reordered coefficients. Therefore, a prioritization
scheme is used to avoid this. It is based on importance by
precision, magnitude, scele, and spatial location as listed
below:

¢ Precision - this primary factor ensures the numer-
ical precision of each significant coefficient. As the
encoding process proceeds, the threshold 7; and the
uncertainty intervals are getting smaller leading to an
increase in precision value. Therefore, all coefficients
in SL; have to be refined to the same precision before
any coefficient is refined further.

o Magnitude - this refers to the magnitude of the re-
construction value as seen by the decoder. Coeffi-
cients with a higher reconstruction value are placed
at the top of SL;. However, those coefficients hav-
ing the same reconstruction value cannot be moved
in the list as these changes can never be known by the
decoder. This requires them to be further prioritized
according to scale.

¢ Scale - this factor ensures that the positional infor-
mation is maintained by being consistent with the
same a priori scanning order adopted by both the en-
coder and decoder. This means that coarser scales
are given higher priority than finer scales.

¢ Spatial location - this factor is considered if there
exist some coeflicients having the same reconstruction
value and belonging to the same scale. Then, higher
priority is given to the coefficient which is scanned
first. This is again consistent with the a priori scan-
ning order to implicitly transmit the positional infor-
mation to the decoder.

The gist of this prioritization protocol is that reordering
is done by reconstruction magnitude according to the a
priori scanning order. Precision is observed by ensuring
that eall significant coeflicients in SL; are refined in the
current SP; before they are refined further in the next
SP;1.

F. Performance Comparison of EZW and JPEG

It was pointed out earlier that EZW coding produces
very good reconstructed image quality as compared to
the current international standard, JPEG, especially at
low and very low bit rates. Fig. 4 compares the perfor-
mance of JPEG against the EZW employing a biorthogo-
nal wavelet filter. It is obvious that JPEG* always yields
a PSNR value which is much lower than that using the
EZW method. Figs. 7 and 8 depict the original images.
More illustrative comparisons are displayed in Figs. 9, 10,
11 and 12 (in Sec. VIII).

“Results were obtained using John Bradley’s xview program (ver-
sion 3.0) [3].
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Fig. 4. Performance comparison between JPEG and EZW with a
biorthogonal wavelet filter (without any enhancements proposed
in this paper) using 512x512 LENA image

III. ADAPTIVE FINDING OF OPTIMUM INITIAL
THRESHOLD

The selection of significant and insignificant coefficients
is actually a thresholding process. In order to start the
EZW coding, an initial threshold T; needs to be chosen.
In general, threshold T; can be written in the form 7; =
a2* where o € (0,1], k € Z, and i € ZT. A simplified
approach (as adopted in Shapiro’s EZW [14],[15],[16]) is
to set a = 1 and choose a k (say, k,) such that:

1

—mar < T1 < maz,

T, e RT.
2 1€

(12)
where maz is the maximum magnitude of all wavelet co-
efficients. Dividing T; by two simply decrements k& while
leaving & unchanged.

However, this method of determining 73 is unlikely to
be optimum in minimizing any given distortion function,
and seems to be highly image dependent. Therefore in this
enhancement method, we propose an adaptive approach
to find an optimum 73 that will minimize the error func-
tion (e.g., the mean square error) for a given bit rate as
implemented in [10]. This corresponds to choosing a more
appropriate value for o while using the same k&, as deter-
mined above. In the simulations, we divided the interval
(as defined in Eq. (12)) into I equal parts, where I is a
user-defined number of adaptive levels. For each of these
I possible T} values, we iterate the EZW encoding process
and the T that gives the largest PSNR is finally chosen
to be the optimum initial threshold in the actual EZW
coding.

This adaptive process can be performed in the trans-
form domain as a direct result of energy conservation
property using orthogonal wavelet filters. Any quanti-
zation errors introduced in the wavelet coeflicients (in
the transform domain) via successive approximation will
correspond to a proportional® amount of error in the re-

5The biorthogonal wavelet filter used here (different from the or-
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Fig. 5. Performance Comparison between Shapiro’s EZW and EZW
with adaptive initial threshold using 512x512 LENA image

constructed image (in the spatial domain). In this way,
there is no need to go back and forth between the im-
age and transform domains. Furthermore, the facts that
EZW coding has short encoding and decoding CPU times
(about 2.5 and 2.0 seconds respectively) and that no over-
head is incurred at the decoder further motivate the prac-
ticality of this adaptive process of finding an optimum 73.

With this enhancement, PSNR improvement of up to 1
dB can be achieved for a wide range of compression ratios
from 8:1 to 1024:1 as illustrated in Fig. 5. More impor-
tantly, improved subjective reconstructed image quality
was observed in Fig. 14 as compared to the original EZW
(without adaptive initial threshold) in Fig. 13.

IV. QuaD-EZW CobpING WITH HIGHER-FREQUENCY
SUBBAND DECOMPOSITION

As a result of energy compaction using wavelet decom-
position, most of the encoded significant coefficients will
come predominantly from the smooth (LL) subband, and
almost none from the finer-scale subbands especially at
very low bit rates. This results in poor edge quality and
is manifested as severe image ringing and blurring. This
level of quality is not very acceptable in most applications
where high frequency details are perceptually important.
Also, in some applications, edge-like information may be
more desirable than the texture information. For instance,
it will be very useful to count the number of levels of a
building, or the number of vehicles on a street, even when
the images are compressed at significantly low bit rates.
In this context, it is less important to know the texture of
the walls of the buildings, or the color of the vehicles.

As described in Sec. II-A, the original image is made
up of four subbands (hence, called the guadrants) after
the first level of conventional octave-band decomposition.

thogonal QMF filter [1] used by Shapiro) exhibits a discrepancy in
PSNR values of only about 1% between the spatial and transform
domains; hence, this still justifies the application of this adaptive
process in the transform domain.
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Subsequent L — 1 levels of decomposition will recursively
decompose the LL quadrant only, while the other three
quadrants are not further decomposed (see Fig. 6(a)).
This enhancement method proposed here aims to preserve
more edge information by further decomposing and encod-
ing these three higher-frequency quadrants independently.
As a result, each of these four quadrants will form its own
hierarchical oriented tree structure in which four indepen-
dent EZW processes can now be applied.

We should notice that the data in these higher-
frequency quadrants are not as correlated as those in the
LL (smooth) quadrant. As a result, further decomposition
may not concentrate the energy in their respective smooth
subbands. Three different methods of decomposing these
higher-frequency quadrants were investigated. The first
method (METHOD 1) performs the conventional octave-
band decomposition to each of these three quadrants (see
Fig. 6(b)). The second method (METHOD 2) also re-
cursively decomposes each of the three higher-frequency
quadrants for L—1 levels®, but this time, each quadrant is
decomposed along its respective orientation direction (see
Fig. 6(c)). For example, the HL quadrant is recursively
decomposed along its HL subband direction. This direc-
tionally sensitive full-band decomposition is motivated by
the idea of energy compaction in the respective orienta-
tion direction. It was found that the energy is not re-
ally concentrated in any particular subband when further
decomposition is applied. Theoretically, if the original
image has a very well-defined directional texture, then
METHOD 2 is found to be more appropriate. The third
method (METHOD 3) further decomposes only the HL
and LH quadrants using 1-D subband decomposition (see
Fig. 6(d)). For example, the HL subband is decomposed
column-wise only as it contains predominantly vertical in-
formation. Similarly, the horizontal information in the LH
subband is decomposed row-wise only. The HH subband
is not decomposed any further as it has diagonal infor-
mation, to which arguably, our eyes are insensitive. In
this case, the HH quadrant can either be discarded”, or
included into the EZW process for the LL quadrant.

Another major consideration in adopting this “Quad-
EZW?” approach is selecting the appropriate resolution
level (i.e., scale) for further decomposition. Simply choos-
ing the finest-scale (i.e., scale = 1) is definitely not the
most suitable choice for different compression rates. As
explained, predominantly only the smooth subbands of
the LL quadrant are encoded at low bit rates. Suppose
that, at such a low bit rate, the three quadrants at scale
= 1 were chosen for further decomposition, this will leave
a “gap” of which the finer scales of the LL quadrant are
not encoded. In other words, only the smooth subbands of
the LL quadrant and the three quadrants at scale = 1 are
encoded. Since subbands at scale = 1 correspond to very
fine textures of the original image, this will create “line-

8In fact, any suitable number of levels can be chosen. If L — 1
is chosen, then each of the four main quadrants will have the same
L — 1 levels of decomposition.

7If the energy in this subband is significantly lower as compared
to the other subbands.

Fig. 6. (a) Top Left: Conventional octave-band decomposition (b)
Top Right: METHOD 1 (c) Bottom Left: METHOD 2 (d) Bot-
tom Right: METHOD 3

drawing” artifacts around the edges of a blurred image.
In order to ameliorate this problem, a more appropriate
scale for further decomposition must be determined based
on the target compression ratio. Generally speaking, at
low bit rate compressions, a higher scale (e.g., scale =
2) should be chosen to avoid such a “gap”. This is in-
tuitively justifiable as each finer scale in this hierarchical
decomposition can be regarded as representing the edge
information of the previous coarser scale in the pyramid.

After further decomposition, each quadrant is now an-
alyzed for its perceptual significance according to the re-
quirements of the decoded images. A general guide is
to compare the proportion of energy in each quadrant,
and then allocate the available bits accordingly. In this
manner, the original total bit budget can be allocated
more“optimally” to preserve the desired edge information.
Another more subjective approach is to allow the user to
perform the bit allocation via an input interface. This, in
fact, provides a useful feature for a more flexible compres-
sion scheme in which the user can have control over the
bit allocation procedure to meet different needs.

Note also that since each EZW process is applied in-
dependently, their initial thresholds are different. This
allows the higher-frequency coefficients to be encoded de-
spite their lower energy contents. By doing so, it actually
contradicts the original aim of EZW to encode and trans-
mit the more significant coefficients first. However, these
low-energy coeflicients should not be discarded as they are
perceptually important for some applications. Although
this may not maximize the PSNR value at a given bit rate,
employing the “Quad-EZW?” method preserves more edge
information. For example it is easier to count the number
of levels of the buildings in Fig. 16 (using METHOD 1)
as compared to that in Fig. 15 which applies the original
EZW algorithm.
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V. PREDICTION OF HIGH-FREQUENCY COEFFICIENTS

A direct consequence of conventional octave-band de-
composition is that the more informative base band
(higher energy content) is located at the coarsest scale,
while the upper bands (lower energy content) at the finer
scales contain the higher spatial frequencies. As explained
in the previous section, these high frequencies are per-
ceptually very important in certain regions although they
contribute only a small proportion (about 1-3% for most
natural images) of the total signal energy. Since these
coefficients make up three quarters of the original image
size, 1t is very expensive to code them. Nevertheless, dis-
carding most of this high-pass information creates visible
artifacts around the edges. This motivates us to preserve
as many high-frequency coefficients as possible with min-
imum overhead.

Since the subbands are filtered and decimated versions
of the same original image, this enhancement method pre-
dicts the locations of high-frequency coeflicients by ex-
ploiting the relationship between subbands at different
scales. This is done by analyzing the activity of the coef-
ficients in the base band. Various activity indices, includ-
ing simple edge detection techniques such as Sobel oper-
ator [9], were investigated. However in this enhancement
method, we used an activity index based on the maximum
amplitude difference between the greatest and smallest co-
efficients within a 3 x 3 neighborhood. An even better pre-
diction is obtained using a directional activity measure-
ment, which is motivated by the directionally-sensitive
subbands. For example, prediction of active coefficients
in the high-low (vertical) subband can be made by mea-
suring the maximum amplitude difference along the rows
of a 3 x 3 window. A pixel is classified as “active” if
the maximum amplitude difference is larger than a pre-
determined threshold, and as “quiet” if it is smaller than
that threshold. In general, more than two classes can be
used. For example by specifying two different thresholds,
three classes can be obtained (this is employed in our sim-
ulations). We also discovered that the average energy of
the upper band pixels corresponding to locations classified
as “active” can be up to 10 times higher than those clas-
sified as “quiet”. Hence, better edges can be obtained by
selectively encoding the predictably more energetic high-
frequency coefficients.

This enhancement is used not only to predict the posi-
tions of the predictably active pixels, but also their recon-
struction values. Each class is assigned one reconstruction
value, which is chosen to be the mean of the coefficients
belonging to the same class. The essence of this prediction
method is that only the signs of the active pixels are sent
explicitly to the decoder, while the positions are sent im-
plicitly via a pre-determined scanning order. As the mag-
nitude of each pixel is not transmitted, a number of bits
are saved. However, more distortion could be introduced if
the difference between the predicted reconstruction value
and the actual magnitude is greater than the correspond-
ing difference between the actual magnitude and zero (or
the value of the coeflicient without using this prediction
method). Therefore the effectiveness of this prediction de-

pends largely on the accuracy of the classifications, and
the accuracy of the predicted reconstruction value for each
class.

Some performance improvements can be obtained by
employing this enhancement method. For example, we
can observe better boundary or edge quality around the
hat, shoulder, face and eyes of LENA in Fig. 18 as com-
pared to Fig. 17 in which no prediction of high-frequency
coefficients is made.

VI. APPLICATION OF A POSTERIORI TRANSLATIONAL
Factors To EZW CoDING

By applying EZW coding, significant coeflicients are
found and each coefficient will have a reconstuction value
after the decoding process. Because of the fact that these
reconstruction values are not the same as the actual val-
ues, distortion is introduced in the decoded image. We
propose here a method to translate these reconstruction
coefficients uniformly with respect to their corresponding
actual wavelet coeflicients in order to reduce the mean
square error, and hence improve the decoded image qual-
ity.

As a simple example, consider the ideal case that all the
reconstruction coefficients, f(z, 7), (in the wavelet domain)
of a particular subband are merely shifted by a certain
fixed amount, k, from their corresponding actual wavelet
coefficients, f(¢,7) such that:

~

f(i:j):f(i:j)_k: (13)

where ¢ and j denote the indices of the wavelet coefficients
in the subband (or block of coefficients) of interest. In this
case, the reconstruction values in the decoder will be ezact
if this entire block of reconstruction coeflicients is trans-
lated back by this fixed amount, k, after® the decoding
process, but before the inverse wavelet transform is ap-
plied. In this section, we propose an enhancement method
to find the optimum value of k& that will reduce this mean
error between f(z,]) and f(¢,7). By keeping track of the
reconstruction values (as seen by the decoder) in the en-
coder, these optimum values of k& can be determined and
transmitted as side information to the decoder.

It can be shown that this approach has the direct con-
sequence of minimizing the mean square error (MSE), and
hence maximizing the PSNR value. Recall that the defi-
nition of PSNR for an M x N 8-bit (i.e., pixel intensity
from 0-255) image is:

2552

wtw Simt 2gmalf(67) = £, )
(14)

where f(%,7) and f(z,]) have the same notations as de-

fined above. Again, we assume the orthogonality principle

here as an error introduced in the wavelet coefficients will

translate to a proportional amount of error in the spatial

domain.

Suppose we define J}, as the criterion function to be min-
imized in order to maximize the value of PSNR, and k.p:

PSNR =10log,,

8Hence, we term it as the a posterior: translational factor.
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as the translational factor that will optimize/minimize Jj
as follows:

T = 3" S 186G, 5) — (F6,9) + BT

1=1j=1

(15)

By taking the gradient of J; with respect to &, and set-
ting to zero, the value of k,p; that minimizes the criterion
function, Jg, is given by:

bopt = 7 DD UG ) — Fli i) (16)

1=1j=1

It is shown that the value of k., is given by the mean
difference between the actual and reconstructed wavelet
coefficients. This result is, in fact, very intuitive because
kop: can be thought of as the center of gravity that best
represents the data in the sense of minimizing the sum
of squared distance from f(z,]) to f(%,7). Actually, this
enhancement method is as good as introducing another
quantization level® to the wavelet coefficients.

We should also appreciate that the application of such a
kopt value can have two direct consequences. It can shift or
translate a reconstruction value towards or eway from the
actual value. Since the value of k., is a “global” transla-
tional factor that shifts all the reconstruction values of a
particular block of coefficients as one entity, some values
will be shifted away, and some towards, the actual values.
Nevertheless, such a shift with k,;; will, on the average,
reduce the error between the actual and reconstructed sig-
nals, as shown in Equation (16) above. However, in some
cases, the application of such a translation can result in
noise-like artifacts. This could be explained by the fact
that some coeflicients are closer to their actual values if
they are not translated than after the translation. By
scaling down the values of kop: by a certain factor (say, a
factor of two or less), we can reduce the effect of shifting
although, in doing so, the improvement in PSNR value
will also drop.

However, 1t is not meaningful to calculate only one value
of kopi for the entire transformed image. This is because
the decorrelated signal generally has a probability distri-
bution that resembles a Laplacian distribution centered at
zero. Graphically, we can view both the trailing ends of
this distribution as corresponding to the significant coeffi-
cients found by the EZW process, while the center portion
corresponds to the insignificant coefficients which have
zero as the reconstruction values. Since the majority of the
coefficients are still insignificant'® after the EZW encod-
ing, the translational factor computed for the entire trans-
formed image will have a value very close to zero as kyp;
measures the mean error between these signals. As a re-
sult, we classify the coefficients of each subband according
to their signs and significance into four subblocks with four

°® This method of determining the quantization level that minimizes
the MSE is similar to the Lloyd-Max quantizer [9], except that the
quantization level computed using this enhancement method is tai-
lored to a specific block of wavelet coeflicients.

190nly about 2% of the total number of wavelet coefficients are
significant for a compression ratio of 64:1.

translational factors - POS_SIG, NEG_SIG, POS_INSIG,
and NEG_INSIG. This approach is motivated by the fact
that the mean error of each subblock now is non-zero (es-
pecially the higher-frequency subbands which have mostly
a zero as the reconstruction values).

Since at the end of the EZW decoding process, only the
locations and signs of significant coeflicients are known to
the decoder, an additional overhead is needed to trans-
mit the signs of insignificant coeflicients to the decoder.
Nevertheless, this side information can be efficiently en-
coded using run-length coding, followed by Huffman en-
coding. One may argue that this additional overhead can
be avoided if only the significant coeflicients are trans-
lated. This argument is definitely valid, but shifting only
those few significant coeflicients alone will not have much
effect on the overall PSNR and subjective decoded image
quality. Our simulations concluded that by translating the
majority of the insignificant coefficients with the optimum
translational factors (instead of a zero as the reconstruc-
tion values) yields a very significant improvement of up
to 3 dB in terms of PSNR value and subjectively more
pleasing decoded image quality due to reduced ringing ef-
fects and sharper edges. This improvement is obvious by
comparing Figs. 19 and 20. However, it should be noted
that the actual compression ratio for the decoded image
in Fig. 20 is less than 64:1 due to the extra overhead.

VII. CoNCLUSIONS AND FUTURE DIRECTIONS

In this paper, we first reviewed the Embedded Zerotrees
of Wavelet Coefficients (EZW) algorithm as proposed by
Shapiro. A complete compression and decompression pro-
gram for still image coding was presented. Slight modi-
fications such as using a biorthogonal wavelet filter were
made. Then we proposed four enhancements to the EZW
coding to further improve both the objective measure of
PSNR values by up to 3 dB and the subjective qual-
ity of decoded images. The first enhancement method
adaptively searched for the optimum initial threshold to
eventually yield a better reconstructed image when EZW
coding is applied. The second method aimed to improve
the high-frequency information by further decomposing
the higher-frequency subbands and applying a “Quad-
EZW?” approach to code the significant coefficients of both
the coarse and fine resolutions. The third method also im-
proved the edge quality of the decoded image by predict-
ing and encoding the higher-frequency subbands based on
the activity in the coarser scales. The fourth method pro-
duced significant improvements, both in terms of higher
PSNR values and better reconstructed image quality, by
shifting blocks of wavelet coefficients with optimum trans-
lational factors prior to the application of inverse wavelet
transform.

Many future directions can be investigated. A direct
approach is to extend these methods to the coding of
color images in which both the luminance and chromi-
nance components can be coded. In addition, the visual
masking effects based on the human visual system (HVS)
can also be exploited. For example, the various subbands
can be weighted by different factors according to their
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perceptual significance before the EZW is applied. An-
other interesting direction is to combine both enhance-
ment methods 3 and 4 (as described above), and assign the
optimum translational factors (using method 4) only to
the predictably active high-frequency coeflicients obtained
using method 3. This can reduce the extra overhead as
well as the noise-like artifacts as mentioned in Sec. VI
In fact, these four enhancements can also be combined
and analyzed. We have also extended this EZW method
to video sequence coding using a motion-compensated 3-
dimensional zerotree data structure. Moreover this class
of video compression algorithm is both multirate and mul-
tiresolution scalable. It was shown to retain very good re-
construction image quality even for low (about 128 kbps)
and very low (less than 64 kbps) bit rates.
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