
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998 369

Transactions Letters

A Novel Unrestricted Center-Biased Diamond
Search Algorithm for Block Motion Estimation

Jo Yew Tham, Surendra Ranganath, Maitreya Ranganath, and Ashraf Ali Kassim

Abstract—The widespread use of block-based interframe mo-
tion estimation for video sequence compression in both MPEG
and H.263 standards is due to its effectiveness and simplicity of
implementation. Nevertheless, the high computational complexity
of the full-search algorithm has motivated a host of suboptimal
but faster search strategies. A popular example is the three-step
search (TSS) algorithm. However, its uniformly spaced search
pattern is not well matched to most real-world video sequences
in which the motion vector distribution is nonuniformly biased
toward the zero vector. Such an observation inspired the new
three-step search (NTSS) which has a center-biased search pat-
tern and supports a halfway-stop technique. It is faster on the
average, and gives better motion estimation as compared to the
well-known TSS. Later, the four-step search (4SS) algorithm was
introduced to reduce the average case from 21 to 19 search points,
while maintaining a performance similar to NTSS in terms of
motion compensation errors. In this paper, we propose a novel
unrestricted center-biased diamond search(UCBDS) algorithm
which is more efficient, effective, and robust than the previous
techniques. It has a best case scenario of only 13 search points
and an average of 15.5 block matches. This makes UCBDS
consistently faster than the other suboptimal block-matching
techniques. This paper also compares the above methods in
which both the processing speed and the accuracy of motion
compensation are tested over a wide range of test video sequences.

Index Terms—Block matching, center-biased search strategy,
diamond search pattern, fast motion compensation, video com-
pression.

I. INTRODUCTION

M OTION estimation is central to many interframe video
coding techniques. Each frame in a typical video se-

quence is made up of some changed regions of the previous
frame, except at scene cuts where the current frame is un-
related to the previous one. Furthermore, it is observed that
the locally changed areas are usually small and restricted,
especially for most low motion content videoconferencing and
visual telephony sequences. The main objective of any motion
estimation algorithm is thus to exploit the strong interframe
correlation along the temporal dimension. If we can estimate
the set of motion vectors that map the previous frame to the

Manuscript received October 20, 1996; revised September 2, 1997 and
March 30, 1998. This work was supported in part by the Wavelets Strategtic
Research Programme, NUS, which is funded by the National Science and
Technology Board and the Ministry of Education under Grant RP960 601/A.
This paper was recommended by Associate Editor L.-G. Chen.

The authors are with the Department of Electrical Engineering, National
University of Singapore (NUS), Singapore 119260.

Publisher Item Identifier S 1051-8215(98)05759-0.

current frame, then we only need to code and transmit the
motion vectors, and possibly the error frame associated with
the difference between the motion-predicted and the current
frames. Since the error frame has a much lower zero-order
entropy than the current frame, fewer bits are needed to convey
the same amount of information. Hence, compression can be
achieved even after coding the motion vectors.

Having recognized the advantages of interframe coding as
compared to intraframe coding of video sequences, many
different motion estimation and motion compensation tech-
niques were investigated and reported in the literature. Some of
the more popular methods include block-matching algorithms
(BMA), parametric/motion models, optical flow, and pel-
recursive techniques. Among these methods, BMA seems to be
the most popular method due to its effectiveness and simplicity
for both software and hardware implementations. BMA is also
used extensively in all current international video compression
standards which include MPEG-1 [3], MPEG-2 [4], H.261 [1],
and H.263 [5].

It is obvious that in using BMA, the most accurate strategy
is the full-search (FS) method which exhaustively evaluates all
possible candidate motion vectors over a predetermined neigh-
borhood search window to find the optimum. The candidate
that gives the best match for a given block distortion measure
is chosen as the estimated motion vector. Nevertheless, this
method has not been a popular choice because of the high
computational cost involved. For example, a search window
with a maximum motion of in both the horizontal and
vertical directions will require candidate search
points for each block. As a result, many computationally
efficient variants such as the three-step search (TSS) [7], the
two-dimensional (2-D) logarithmic search [6], the cross search
[2], the conjugate directional search [11], and the dynamic
search-window adjustment and interlaced search [8] were
proposed. Although they are suboptimal in the sense that they
are susceptible to being trapped in local optima, these faster
variations are usually employed in practical applications.

Among these suboptimal BMA’s, TSS [7] became the most
widely used technique mainly because of its faster estimation.
It consists of three evaluation steps—each step contains nine
uniformly spaced search points which get closer after every
step. The best candidate search point in the previous step
becomes the center of the current step. Hence, TSS requires
a fixed search points per block, which
leads to a speedup ratio of 9 over the FS when .

1051–8215/98$10.00 1998 IEEE

370 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998

Fig. 1. Center-biased motion vector distribution characteristic of the
fast-motion “Football” sequence.

The main drawback of TSS is the relatively large search
pattern in the first step which renders it inefficient for finding
blocks with small motions. This goes against the fact that most
real-world sequences have a centrally biased motion vector
distribution. This is depicted in Fig. 1, in which more than
80% of the blocks are stationary or quasi-stationary (within
a central 3 3 area) even in the fast-motion “Football”
sequence. Smaller-motion sequences such as “Miss America”
and “Salesman” contain an average of 90 and 99% of the
blocks having motion vectors within 3 pixels, respectively.

In order to exploit the characteristics of the center-biased
motion vector distribution, a new three-step search (NTSS)
algorithm [9] was introduced. It employs a center-biased
search pattern in the first step by adding a smaller central
eight-point pattern to that of the TSS. As a result, the worst
case scenario of the NTSS will require block
matches. However, the NTSS also allows termination of the
search after the first or second step. Using this technique, only
17 search points are needed for stationary blocks, and either
20 or 22 search points for quasistationary blocks (within
pixels). According to the results in [9], the speed of NTSS is
within 18% of TSS, but it gives almost consistently better
motion estimates.

However, the computational requirement of NTSS may be
higher than the TSS for sequences which have a lot of large
motion vectors, for example, due to fast camera panning or
accelerating objects in the scene. Recently, a new four-step
search (4SS) algorithm [10] was proposed to speed up both
the worst case and average-case computational requirements
of NTSS. It also exploits the center-biased motion vector
distribution characteristic by utilizing a nine-point search
pattern on a 5 5 grid in the first step instead of a 9 9
grid as in the TSS. As a result of starting with a smaller
search grid pattern, 4SS requires four search steps as compared
to only three steps in both the TSS and NTSS for the same
search window of . Nevertheless, simulation results
in [10] show that the total number of candidate search points
in 4SS actually ranges from the best case of 17 to the worst
case of 27 points. According to [10], 4SS gives a speedup

of six block matches for the worst case, and an average of
two block matches less than the NTSS. More importantly,
4SS still manages to maintain motion estimation performance
comparable to the NTSS, which in turn is better than the TSS.

In this paper, we propose a novel unrestricted center-biased
diamond search (UCBDS) algorithm for suboptimal block
motion estimation. Section II first presents the new diamond
search pattern, and explains the algorithm development of
UCBDS. Then a theoretical analysis is carried out to inves-
tigate the fast and effective search of UCBDS. Section III
presents some simulation results of our proposed UCBDS
scheme in comparison with the FS, TSS, NTSS, and 4SS.
Finally, the conclusions are drawn in Section IV.

II. UNRESTRICTEDCENTER-BIASED DIAMOND SEARCH

In most practical applications such as video telephony, real-
time software or hardware implementation of the video codec
is indispensable. The fact is that a significant portion of the
processing time of an interframe video encoder is dedicated
to performing motion estimation. This really motivates the
need for a fast and effective motion estimation algorithm. We
have reviewed a few popular block-based motion estimation
algorithms in the previous section. In this section, we will
explain a more efficient, effective, and flexible solution to
suboptimal block-based interframe motion estimation.

A. Algorithm Development of UCBDS

To begin any block-based motion estimation algorithm, each
frame is first divided into blocks of size pixels. Block
sizes of 16 16 are used for MPEG-1 [3], MPEG-2 [4],
H.261 [1], and H.263 [5].1 Furthermore, in low and very low
bit-rate video applications, the search for each block match is
usually performed over a 15 15 search area,2 requiring 225
possible candidate search points per block when the FS is used.
As mentioned earlier, this is too computationally expensive.
Hence, our main objective is concerned with choosing a
suitable subset of these 225 points for a suboptimal version
of the search algorithm.

Fig. 2(a) depicts a basic diamond search-point configuration
used in UCBDS. It consists of nine candidate search points.
This pattern is inspired by its compact3 structure which is
very suitable for exploiting the center-biased characteristic
of motion vector distribution. Fig. 2(b) and (c) shows the
positions of the diamond, with respect to the previous position,
for the next search step along the diamond’s vertex and
face, respectively. Note that a maximum overlapping region
is chosen so that there are either five or three new candidate
search points to be evaluated at every next step. Maximum
overlapping is required to minimize the number of search
points at each step. However, UCBDS also attempts to reach

1Although H.263 has an advanced option to switch to four8� 8 blocks.
2However, as will be explained later, our UCBDS scheme is flexible enough

to operate on any size search window.
3More compact structures are either the smaller five-point diamond or the

nine-point square within�1 units. However, simulations show that a larger
size search pattern is necessary to reduce the chances of being trapped in local
optima. This is especially true for larger motion blocks whereby the central
block motion field surface can be relatively smooth and misleading.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998 371

(a) (b)

(c) (d)

Fig. 2. Diamond search pattern. (a) Original diamond search-point configuration. (b) Next step along a diamond’s vertex. (c) Next step along a diamond’s
face. (d) Final step with a shrunk diamond.

out as far as possible in each step to search for larger motion
blocks. Such a strategy is critical to reduce its susceptibility
to being trapped in local optima. Fig. 2(d) illustrates the final
search step where the diamond is shrunk to only four new
candidates for internal-point checking.

In order to describe the UCBDS algorithm, we have to
define a block distortion measure (BDM) which forms the
objective function for each block’s evaluation. For simplicity,
we choose the sum of absolute difference (SAD) given by

(1)

where . Here, each block with
its upper left corner at a position in the current frame

is estimated/predicted from a block of the same size in the
previous (reconstructed) frame by means of a motion
vector . Other BDM’s such as sum of square error
(SSE) and maximum pixel count (MPC) can also be used.
However, as will be shown by the simulation results later, the
choice of the simple SAD measure will give an equivalent
estimation result like that obtained by using the SSE measure.

Fig. 3 illustrates an example of the unrestricted search path
strategy using UCBDS. Assume that the true motion vector of
the block is . We begin at (0, 0) with

Fig. 3. Example of an unrestricted search path strategy using UCBDS to
locate a motion vector at(+7;�2). The best candidate search point at step
5 coincides with that of step 4; hence, a shrunk diamond is used for step 6.

an original diamond pattern marked as 1. For each of the nine
candidate search points, the BDM is computed and compared.
If the minimum BDM was found at (0, 0), the four points at

372 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998

and are compared. Suppose that the lowest BDM is
found at (2, 0) We then proceed to the next step (marked as
2) in which the new diamond is now centered at (2, 0). In
this example, we require six search steps, where the shaded
candidate points are the best points in each step. Notice that the
best point in step 5 coincides with that of step 4. This signals
us to shrink the diamond pattern for internal-point checking.
Altogether, we have performed 28 block evaluations for this
example.

The above unrestricted search path strategy using the
UCBDS algorithm can be summarized as follows.

• Starting: The original diamond pattern [Fig. 2(a)] is
placed at (0, 0), the center of the search window. The
BDM is evaluated for each of thenine candidate search
points. If the minimum BDM point is found to be at
the center of the diamond, proceed toEnding;
otherwise, proceed toSearching.

• Searching: If the minimum BDM point in the previous
search step is located at one of the four vertices [i.e.,
either , or , then
proceed toVertex Search. Else, if it is located at one
of the four possible faces of the previous diamond [i.e.,
either or

, then proceed toFace Search.
— Vertex Search:The diamond pattern of Fig. 2(b) is

used with the center of the new diamond coinciding
with the lowest BDM point [i.e., updating the center

]. Fivenew candidate search points are evaluated.

— Face Search:The diamond pattern of Fig. 2(c) is used
with the center of the new diamond coinciding with
the lowest BDM point [i.e., updating the center].
Threenew candidate search points are evaluated.

Note that any candidate point that extends beyond
the search window is ignored. The minimum BDM
is again identified. If the minimum BDM is found at

, then proceed toEnding; otherwise, proceed to
Searching to continue the next search step.

• Ending: The shrunk diamond pattern of Fig. 2(d) is used
with the same center . Now, the finalfour internal
points of the previous diamond are evaluated. Similarly,
any internal candidate point that extends beyond the
search window is also ignored. The candidate point that
gives the lowest BDM is chosen as the estimated motion
vector . The current block’s search process is
completed. Proceed toStarting for the next block, if any.

B. Theoretical Analysis of UCBDS

We have explained earlier the motivations for having center-
biased search algorithms such as the NTSS, 4SS, and UCBDS.
This subsection aims to investigate theoretically why UCBDS
is truly center biased, and how speed improvement can be
obtained over other search algorithms. In particular, we are
comparing UCBDS with the fast 4SS (comparisons with the
TSS, NTSS, and FS are similar).

Our main argument in this analysis is based heavily on the
observed center-biased motion vector distributions. To begin,

Fig. 4. Minimum possible number of search points for each motion vector
location using UCBDS.

Fig. 5. Minimum possible number of search points for each motion vector
location using 4SS.

we first analyze the minimum4 number of search points
within a region of 3 pixels about the stationary motion vector

. This is depicted in Fig. 4. Similarly, Fig. 5 illustrates

4Here, we refer to theminimumpossible number of search points needed
to conclude that a candidate point(mx;my) is the estimated motion vector.
In practice, the same motion vector may need more than this minimum value.
Actually, it depends heavily on the gradient of the block motion field surface.
For example, the motion vector at(0;+1) will need 13 block matches if(0;0)
was chosen, but it will need 18 block matches if(0;+2) was chosen instead
in the first search step. The same problem also plagues all other block-based
search algorithms.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998 373

TABLE I
PERFORMANCE COMPARISONS (PER 16 � 16 BLOCK) OF FS, TSS, NTSS, 4SS,AND UCBDS USING DIFFERENT VIDEO

SEQUENCES; THE AVERAGE NUMBER OF SEARCH POINTS PER BLOCK WOULD BE DIRECTLY PROPORTIONAL TO CPU TIME

the corresponding minimum for 4SS over the same region.
It can easily be observed that, within this same region, UCBDS
gives lower values of as compared to 4SS. Furthermore,
UCBDS covers a slightly larger area for search
points. However, beyond the3 region, it is noted that 4SS
can become more efficient. To get a better picture of the gain in

, we subtract the corresponding candidate points of UCBDS
from 4SS over this region. By doing so, we can obtain a saving
of as high as four block matches per block.

To further quantify this gain in for block estimation, we
define the following probabilities of occurrence:

• —probability of stationary blocks [i.e., the motion
vector is (0, 0));

• —probability of quasi-stationary blocks within1, but
excluding (0, 0);

• —probability of quasi-stationary blocks within2, but
excludingthe region at the center;

• —probability of quasi-stationary blocks within3, but
excludingthe 2 region at the center;

• —probability of blocks in the region where
.

By taking the average of the differences in between 4SS
and UCBDS over each of the above regions, the statistical
average gain of UCBDS over 4SS can be represented as

gain in

(2)

where , and is some negative
number. Suppose further that we assume a uniform probability

TABLE II
PERFORMANCE OFUCBDS VERSUS OTHER SEARCH TECHNIQUES

USING THE SAD MEASURE FOR THE“FOOTBALL” SEQUENCE

distribution over the 3 region at the center, and that no
motion vectors lie outside of this region. Then from (2), we
will have a uniformly distributed average gain of

uniform gain in

search points per block (3)

However, observations from most real-world sequences show
very peaked probabilities around and , as depicted in
Fig. 1. This means that an average gain of more than 2.94
search points per block can be expected. More simulation
results later will justify this statement. At the other extreme,
if all blocks are stationary or have motion vectors of either
(0, 1), (0, +1), (1, 0), or (1, 0), then we can have the
maximum possible gain of four search points, or a 31% speed
improvement, per block over the fast 4SS.

III. SIMULATION RESULTS AND COMPARISONS

As highlighted earlier, only theminimumnumber of search
points per block was considered in the theoretical analysis.
In practice, this may not always be the case. This section,
therefore, aims to investigate the actual experimental perfor-
mance of UCBDS. In all of our simulations, the SAD block

374 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998

(a) (b)

(c) (d)

Fig. 6. Performance comparisons of FS, TSS, NTSS, 4SS, and UCBDS over all four test criteria using “Trevor White” sequence.

distortion measure, block size , and search window
size were used. For vigorous testing, a total of six
sequences with different degrees and types of motion content
was used; however, due to space limitations, we will only
present the results of three representative sequences. First, we
used 90 frames of the “Trevor White” sequence, which is a
typical videoconferencing scene with limited object motion
and a stationary background. Second, we chose 100 frames
of the “Flower Garden” sequence, which consists mainly of
stationary objects, but with a fast camera panning motion.
Third, we selected 80 frames of the “Football” sequence,
which contains large local object motion.

We compared the UCBDS against four other block-based
motion estimation methods—FS, TSS, NTSS, and 4SS—using
the following four test criteria.

1) Average SSE per pixel—This shows the magnitude of
distortion per pixel; using SAD for the BDM gives
similar results.

2) Probability of finding true motion vector per
block—This gives the likelihood of the suboptimal
predicted block motion vectors to be the same as those
found using the optimum FS; this also provides an
indication of the susceptibility of each suboptimal search
method being trapped in local optima.

3) Average distance from true motion vector per
block—This measures the Euclidean distance of a

block’s predicted motion vector from that obtained
using FS.

4) Average number of search points per block—This
provides an equivalent measure of the actual CPU run
time, as justified below.

Using SAD in (1) as the BDM, we need Abs
Add operations per search point. If each frame

is partitioned into blocks of pixels each, then
the total number of operations per frame is represented by

, where is the total number of search points
of the th block. Since we employed the same SAD measure
and the same number of blocks for each of the block-
matching schemes, the average number of search points per
block, therefore, provides exactly an equivalent measure of the
actual CPU search time. Furthermore, measurements of CPU
run times are highly dependent on system loads and algorithm
implementation.

Table I summarizes the experimental performance of each
search technique over the four test criteria, for both the SSE
and SAD block distortion measures, using three representative
sequences. The first column tabulates the search speed crite-
rion,5 whereby the minimum, maximum, average, and speedup
factor with respect to FS are reported. It is worthwhile to note

5For conciseness, only the search speed results obtained using the SAD
measure are shown as similar positively correlated results were obtained using
the SSE block distortion measure. Furthermore, SAD is preferred because of
its computational simplicity.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998 375

(a) (b)

(c) (d)

Fig. 7. Performance comparisons of FS, TSS, NTSS, 4SS, and UCBDS over all four test criteria using “Flower Garden” sequence.

Fig. 8. Performance evaluations. (a) Original frame of “Flower Garden.” (b) Uncompensated frame difference (average SSE per pixel: 1115.6). Mo-
tion-compensated frame differences using (c) FS (SSE: 142.4) and (d) UCBDS (SSE: 146.4).

376 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998

that UCBDS has both the minimum and maximum numbers of
search points per block due to its center-biased and unrestricted
search strategy, respectively. However, the averageper
block with ; such
observations were true for all of the test sequences we used.
This shows that UCBDS is generally more efficient (i.e., it
has a faster search) than the other schemes, regardless of the
presence of panning, zooming, small, or large motions in the
sequence.

A natural question now is: How much does UCBDS trade
off block distortion for higher search speed? From column 2
of Table I, it can be observed that UCBDS actually performs
very competitively in terms of low block distortion, even
though it has the lowest average number of search points.
For a better comparison of the tradeoff between distortion and
search speed, Table II gives the percentage6 improvement of
UCBDS over the other search techniques, using the “Football”
sequence as an example. It can be seen that UCBDS has
marginally worse BDM performance compared to the other
search techniques. However, the speed improvements are quite
substantial, and thus justify its use over the other techniques.
In another set of comparisons, UCBDS gave both lower BDM
and higher search speed for the “Flower Garden” sequence. A
possible explanation for the good performance of UCBDS is
that it has a very compact search configuration which speeds
up the search, while the unrestricted search strategy minimizes
the risk of being trapped into a local minimum. From the
third and fourth columns of Table I, it can be concluded that
UCBDS generally gives a lower average Euclidean distance
error from the true motion vectors, and a higher average
probability of finding the true motion vectors, when compared
with the other suboptimal search techniques.

Figs. 6 and 7 plot the actual performance of each search
scheme on a frame-by-frame basis. It is clear that UCBDS
performs very well in terms of block distortion, while it consis-
tently outperforms the other methods in terms of search speed.
Finally, some results of motion estimation using UCBDS
are depicted in Fig. 8 using the “Flower Garden” sequence
[Fig. 8(a)]. Fig. 8(b) shows the frame difference (shifted by

128, but without scaling) between two frameswithout any
motion compensation, while Fig. 8(c) and (d) illustrates the
corresponding frame differencesafter performing motion es-
timation using the FS and UCBDS, respectively. It can be
seen that UCBDS gives very good motion estimates (with an
average SSE per pixel of 142.4) when compared to the FS
(SSE per pixel is 146.4), but UCBDS is about 12.6 times
faster than the FS method.

IV. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we proposed a novelunrestricted center-
biased diamond search(UCBDS) algorithm for fast suboptimal
block-based motion estimation. Motivated by the center-biased
motion vector distribution characteristics of real-world video
sequences, UCBDS was designed with the most (practical)
compact diamond search point configuration. We then ex-
plained the algorithm development of UCBDS, and performed

6A 100% improvement means that it has twice better performance.

a theoretical analysis of its efficiency. Simulation results,
both objective and subjective, were presented to show that
UCBDS is more efficient, effective, and robust as compared
to some other popular block-matching algorithms such as the
full-search, the three-step search, the new three-step search,
and the four-step search. In short, UCBDS has the following
advantages over the other search algorithms.

• Efficiency—UCBDS is highly center biased, and it has
a very compact diamond search point configuration. This
allows a minimum of only 13 candidate search points per
block, and a speed improvement of up to 31% over the
fast four-step search.

• Effectiveness—UCBDS has the freedom to search for the
true motion vector, which indirectly reduces the chances
of being trapped in local optima, and this can lead to
lower motion compensation errors.

• Robustness—As UCBDS is unrestricted and does not
have a predetermined number of search steps, it is flexible
enough to work well for any search range/window size.

Lastly, UCBDS still possesses the regularity and simplic-
ity that are useful for hardware implementation. Although
UCBDS has demonstrated good results, it is very probable
that it may not perform as well if the majority of the motion
vectors lie beyond 3 pixels. Examples of this scenario
include predicted () and bidirectional () frames in a typical
MPEG configuration, where the interframe motion can be very
large. In fact, such a problem can be tackled by extending
the monogrid UCBDS to a multigrid hierarchical UCBDS
(H-UCBDS). Our preliminary simulations [13] have shown
that H-UCBDS not only has a fast search for very large
motion sequences, but it also generates a multiresolution
representation of the motion vectors which is very useful for
a scalable video coding framework [12].

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their useful suggestions and comments.

REFERENCES

[1] CCITT SGXV, “Description of reference model 8 (RM8),” Document
525, Working Party XV/4, Specialists Group on Coding for Visual
Telephony, June 1989.

[2] M. Ghanbari, “The cross-search algorithm for motion estimaton,”IEEE
Trans. Commun., vol. 38, pp. 950–953, July 1990.

[3] ISO/IEC CD 11172-2 (MPEG-1 Video), “Information technol-
ogy—Coding of moving pictures and associated audio for digital
storage media at up to about 1.5 Mbits/s: Video,” 1993.

[4] ISO/IEC CD 13818-2—ITU-T H.262 (MPEG-2 Video), “Information
technology—Generic coding of moving pictures and associated audio
information: Video,” 1995.

[5] ITU Telecommunication Standardization Sector LBC-95, Study Group
15, Working Party 15/1, Expert’s Group on Very Low Bitrate Visual
Telephony, fromDigital Video Coding Group, Telenor Research and
Development, or via URL: “http://www.nta.no/brukere/DVC/tmn5.”

[6] J. R. Jain and A. K. Jain, “Displacement measurement and its application
in interframe image coding,”IEEE Trans. Commun., vol. COM-29, pp.
1799–1808, Dec. 1981.

[7] T. Koga, K. Ilinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-
compensated interframe coding for video conferencing,” inProc. NTC
81, New Orleans, LA, Nov./Dec. 1981, pp. C9.6.1–C9.6.5.

[8] L. W. Lee, J. F. Wang, J. Y. Lee, and J. D. Shie, “Dynamic search-
window adjustment and interlaced search for block-matching algo-

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 4, AUGUST 1998 377

rithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, pp. 85–87,
Feb. 1993.

[9] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm
for block motion estimation,”IEEE Trans. Circuits Syst. Video Technol.,
vol. 4, pp. 438–442, Aug. 1994.

[10] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast
block motion estimation,”IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, pp. 313–317, June 1996.

[11] R. Srinivasan and K. R. Rao, “Predictive coding based on efficient
motion estimation,”IEEE Trans. Commun., vol. COM-33, pp. 888–896,
Aug. 1985.

[12] J. Y. Tham, S. Ranganath, and A. A. Kassim, “Highly scalable wavelet-
based video codec for very low bit-rate environment,”IEEE J. Select.
Areas Commun. (Special Issue on Very Low Bit-Rate Coding), Jan. 1998.

[13] J. Y. Thamet al., “A fast hierarchical diamond search algorithm for
block motion estimation and scalable video compression,” in prepara-
tion, 1997.

