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ABSTRACT
This paper introduces a novel class of length-�N orthonormal scalar
wavelets, and presents the theory, implementational issues, and their
applications to image compression. We first give the necessary and
sufficient conditions for the existence of this class. The parameter-
ized representation of filters with different lengths are then given.
Next, we derive new and efficient decomposition and reconstruc-
tion algorithms specifically tailored to this class of wavelets. We
will show that the proposed discrete wavelet transformations are
orthogonal and have lower computational complexity than conven-
tional octave-bandwidth transforms using Daubechies’ orthogonal
filters of equal length. In addition, we also verify that symmet-
ric boundary extensions can be applied. Finally, our image com-
pression results further confirm that improved performance can be
achieved with lower computational cost.

1. INTRODUCTION

Orthogonality, smoothness, compact support, and symmetry of wa-
velet basis are very important properties in filter design. Orthogo-
nality is useful because it means that rate-distortion optimal quati-
zation strategies may be employed in the transform domain and still
lead to optimal time-domain quantization (at least when the error
is measured in a mean-square sense). The smoothness of wavelets
controls the noise in regions with constant background [5]. Also, a
higher degree of smoothness corresponds to better frequency local-
ization of the filters [1]. If wavelets are compactly supported, the
corresponding lowpass and highpass filters have finite impulse re-
sponses, so that the summations in the fast wavelet transform are
finite. Symmetry allows the use of symmetric extension to pro-
cess image borders. As we know, except the Haar basis, all real or-
thogonal wavelet bases with compact support are asymmetric [1].
On the other hand, smoother wavelets correspond to larger support
lengths; consequently, it will increase the computational complex-
ity. The question now is: Can we construct a class of orthonormal
wavelets that are smoother, compactly supported, and have low-
complexity decomposition and reconstruction implementations?

This paper will show that the above question is not only possi-
ble, but also illustrate that better image compression performances
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can be achieved with lower computations. In addition, symmetry
boundary extensions can be applied for this class of orthonormal
wavelets; hence there are no border effects in the decoded images.

2. PARAMETERIZATION OF A SPECIAL CLASS OF
LENGTH-�N ORTHONORMAL FILTER BANKS

Let H��z� and H��z� be the z-transform of the lowpass and high-
pass filters associated with an orthonormal scalar wavelet. They are
conjugate quadrature (CQF) and power complementary filters [6],
i.e. H��z� � �z�N��H���z� and jH��z�j� � jH��z�j� � �.
The polyphase components of H��z� will be denoted by H���z�
and H���z� such that

H��z� � H���z
�� � z��H���z

�� �
�p
�

�N��X
k��

hkz
�k�

The polyphase components give the even and odd indexed coeffi-
cients of H��z� separately. Similarly, the polyphase components
of H��z� will be denoted by H���z� and H���z� such that

H��z� � H���z
�� � z��H���z

�� �
�p
�

�N��X
k��

gkz
�k�

where gk � ����k��h�N���k , k � �� �� � � � � �N � �. The
polyphase matrix of a scalar wavelet filter can thus be defined as

H
N
p �z� �

�
H���z� H���z�
H���z� H���z�

�
� (1)

An important result in [7] is that the polyphase matrixHN
p �z� can

be factorized as

H
N
p �z� � R�

N��Y
j��

D�z�Rj � (2)

where

D�z� �

�
� �
� z��

�
� and Rj �

�
cos�j � sin�j
sin�j cos�j

�
�

for j � �� � � � � N � �. This lattice parameterization givesHN
p �z�

as a function of angles. Note that HN
p �z� is of degree N � �.

Therefore the filters H��z� and H��z� are of degree �N � �. For



the filter to be orthonormal and has at least one vanishing moment,
it is necessary that H���� � � and H����� � �. Equivalently,
these conditions can be expressed in terms of the angles �j , j �
�� �� � � � � N � �, such that

N��X
j��

�j � �n� �
�

�
� n � Z� (3)

In this paper, we will investigate the construction of a class of
orthonormal length-�N scalar wavelet filters fhkg�N��k�� satisfying

h�k�� � ����kh�k� k � �� �� � � � � �N � �� (4)

or

h�k�� � ����k��h�k� k � �� �� � � � � �N � �� (5)

Note that the filter satisfying (5) can be obtained by ‘flipping’ or
reversing the order of the filter satisfying (4), and vice versa.

The following theorem provides the necessary and sufficient
conditions on the �’s so that (4) or (5) holds:

Theorem 1. For any length-�N orthogonal scalar filter fhkg�N��k��

with the lattice structure (2), it satisfies relation (4) or (5) iff �j ’s
have, respectively, the following properties�

��j � �nj�� j � �� �� � � � � N � �� nj � Z�
�� � ����

(6)

or �
��j � �nj�� j � �� �� � � � � N � �� nj � Z�
�� � �����

(7)

Proof. Sufficient part: Suppose that��j satisfy (4) (a similar proof
holds for ��j satisfying (5)). Using (2), we obtain

H
�N
p �z� � R�D�z�R�

N��Y
j��

D�z��R�j���

Denote

�
b���z

�� b���z
��

b���z
�� b���z

��

�
	�
QN��
j�� D�z��R�j��. It is clear

from (1) that

H���z� � �cos�� � z�� sin���b���z
�� �

�� sin�� � z�� cos���b���z
���

H���z� � �cos�� � z�� sin���b���z
�� �

�� sin�� � z�� cos���b���z
���

Thus, we have H���z� � H����z�. This implies that the filter
fhkg�N��k�� satisfies the relation (4).

Necessary part: If an orthogonal scalar filter fhkg�N��k�� sat-
isfies the relation (4), then the polyphase matrix H�N

p �z� has the
form �

H���z� H���z�
H����z� H����z�

�
�

In [2], G. Evangelista proved that such a matrix can be factorized
as

H
�N
p �z� � R�D�z�R�

N��Y
j��

D�z��R�j���

where �� � ���. Using the factD�z�� �D�z�ID�z�, we have

H
�N
p �z� � R�D�z�R�

N��Y
j��

D�z�ID�z�R�j���

By comparing it with (2), we obtain R�j � I. Thus we have
��j � �nj�, nj � Z.

2.1. Some Examples

From Theorem 1 and equation (3), one can obtain the parameter-
ized length-
 (when N � �) filter as

h� � �
p
�

�
sin ��� h� � �h�� h� �

p
�

�
sin� �� h� � h��

h� �

p
�

�
sin ��� h� � �h�� h� �

p
�

�
cos� �� h	 � h��

Clearly, this filter satisfies relation (5). If the parameter � is not a
multiple of �, we can verify that infRe
z��� jH��z�j � �. There-
fore, the associated wavelet will constitute an orthonormal basis of
L��R�. When � � �

�
� �

�
arcsin � �

�
�, the filter denoted by S8(1)

has two vanishing moments, and the corresponding wavelet has a
Hölder exponent of ������. When � � �������, the filter denoted
by S8(2) has only one vanishing moment, but has optimal transition
band with respect to the ideal “brickwall” filter.

For N � �, the parameterized length-�� filter is given by
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p
�
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cos� cos � cos��� ���
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p
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p
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and h�k�� � ����kh�k� k � �� � � � � 
� When � � ��
��� and
� � ������, the filter denoted by S12(1) has three vanishing mo-
ments, and has a Hölder exponent of ������ (if � � ����
� and
� � ��

��, the filter has three vanishing moments, and a Hölder
exponent of ���
��). When� � ��
��� and � � ������, the filter
denoted by S12(2) has one vanishing moment and optimal transi-
tion band.

3. NEW MULTIRESOLUTION DECOMPOSITION AND
RECONSTRUCTION ALGORITHMS AND THEIR

PROPERTIES

Given any length-�N CQF fhkg�N��
k���N�� that satisfies (4) or (5),

we generate a lowpass filter fhkg�N��
k���N��, and two highpass fil-

ters fgkg�N��
k���N�� and fg

k
g�N��
k���N��, such that

hk � h��k� gk � ����k��h��k� g
k
� g��k� (8)

Obviously, the two scaling functions corresponding to fhkg�N��
k���N��

and fhkg�N��
k���N�� form a symmetric pair at point �

�
. By equations

(4) and (8), it is easy to check the following relations hold:



Proposition 1.
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For this special class of filter banks, we will present new mul-
tiresolution decomposition and reconstruction algorithms which are
different from the traditional framework [3].

3.1. The Proposed Decomposition Algorithm
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Figure 1: Proposed multiresolution decomposition algoritm.

Let fx
��n g be the input data. As shown in Figure 1, the decimated
outputs after one level of decomposition are the reference signal
fx
��n g and the detail signal fd
��n g, where
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By Proposition 1, such a decomposition scheme generates an or-
thogonal transformation mapping fx
��n g � fx
��n � d


��
n g. The rep-

resentation matrix of the orthogonal transformation P is orthog-
onal, i.e. P�� � P

T . This process is repeated recursively on
the reference signal. After L levels, we obtain the reference signal
fx
L�n g with a resolution reduced by factor of �L with respect to
fx
��n g, and the detail signals fx
L�n g� � � � � fx
��n g.

3.2. The Proposed Reconstruction Algorithm
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Figure 2: Proposed multiresolution reconstruction algorithm.

Due to the orthogonality of the decomposition transformation, the
representation matrix of the reconstruction transformation is just
P
T �Given the level-� reference signal fx
��n g and detail signal fd
��n g,

we can reconstruct the reference signal fx
����n g at level ��� using
the following formulae (see Figure 2):

x
����n �
X
k

�hn��kx

��
�k � hn��kx


��
�k���

�
X
k

�gn��kd
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�n � g

n��k
d

��
�k����

Similarly, this process is applied recursively on the reference and
detail signals until we recover the original signal fx
��n g.

3.3. Computational Complexity

One important consideration in application is the computational com-
plexity of applying a given filter, which directly relates to its im-
plementational efficiency. For most pratical applications, the dom-
inating factor for computational complexity is usually governed by
the number of multiplications involved, hence justifying it as a mea-
sure of the computational cost of using a wavelet filter.

In general, for a length-�N orthogonal filter (with no symme-
try), each output sample will require �N multiplications during de-
composition or reconstruction using Mallat’s algorithms [3]. By
exploiting the specific properties in (4) or (5) and employing the
proposed multiresolution algorithms, we can easily show that each
output sample now will only require �N multiplications when us-
ing a length-�N filter belonging to this special class. As mentioned
earlier, longer filters have higher regularity. Hence, this special class
of orthonormal wavelets can possess greater smoothness without a
penalty on computation complexity.

3.4. Symmetric Boundary Extension

Let fhkg�N��
k��N�� be a length-�N CQF satisfying (4) or (5), and the

filters fgkg�N��
k��N�� , fhkg�N��

k��N�� , and fg
k
g�N��
k��N�� satisfy (8).

Although this special class of orthonormal wavelets are not sym-
metrical, we show that symmetric boundary extension can be ap-
plied when using the proposed multiresolution algorithms.

Suppose that fx
��k g�K��k�� is an input sequence with an even
number of samples. We can perform a half-point symmetric exten-
sion as follows:

� � � � x��� x��� x�� x�� � � � � x�K��� x�K��� x�K � x�K��� � � �
(9)

where

x�k�� � xk and x�K�k � x�K���k� (10)

To show that symmetric boundary extension is applicable, we only
need to prove that the output signals are also symmetrical; i.e. prov-
ing x
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��n��, as follows:
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Similarly, we can show d
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4. SIMULATIONS AND RESULTS

Image coding experiments are performed by comparing the designed
length-
 and length-�� filters with the Daubechies’ D8 and D12
wavelets. For fair comparisons, the same still image codec [4] was
used. From the PSNR performances in Table 1, it can be concluded
that the designed length-
 and length-�� filters can generally out-
perform the D8 and D12 wavelets by up to ���� dB and ���� dB,
respectively.

Figure 3 portrays the subjective quality of the decoded ’Boat’
images at a compression 32:1 using D8 and S8(1). A careful com-
parison reveals some distinct differences between the two images:
boundary artifacts are completely removed by using symmetric ex-
tension with S8(1); and the white mast at the top center of the im-
age and some cables are also better preserved in the reconstructed
image using S8(1).

CR D8 D12 S8(1) S8(2) S12(1) S12(2)
8:1 40.57 40.64 40.74 40.75 40.73 40.77
16:1 37.14 37.25 37.40 37.43 37.38 37.46
32:1 33.88 33.96 34.25 34.29 34.22 34.30
64:1 30.84 30.84 31.33 31.39 31.30 31.39
128:1 28.18 28.14 28.73 28.75 28.72 28.76
8:1 36.73 37.19 36.86 37.05 36.83 37.04
16:1 31.53 31.91 31.62 31.79 31.59 31.78
32:1 27.70 28.01 27.88 27.98 27.87 27.97
64:1 25.02 25.11 25.23 25.26 25.22 25.26
128:1 23.53 23.58 23.71 23.72 23.71 23.72
8:1 38.48 38.47 38.73 38.76 38.73 38.77
16:1 33.84 33.84 34.12 34.16 34.11 34.17
32:1 30.28 30.33 30.60 30.61 30.59 30.62
64:1 27.60 27.59 27.89 27.87 27.89 27.89
128:1 25.48 25.51 25.76 25.76 25.76 25.77
8:1 36.10 36.10 36.31 36.34 36.31 36.35
16:1 32.61 32.60 32.88 32.90 32.87 32.90
32:1 29.97 30.03 30.39 30.40 30.38 30.40
64:1 27.88 27.95 28.38 28.39 28.37 28.40
128:1 25.91 26.08 26.65 26.67 26.64 26.65

Table 1: Image compression performance comparisons of six or-
thogonal filters using four 
�� � 
�� monochrome images, Lena,
Barbara, Boat and Goldhill (from top to bottom).

5. CONCLUSIONS

In this paper, we investigated a special class of orthonormal wavelets.
We provided the necessary and sufficient conditions to define this
class, and proposed new decomposition and reconstruction algo-
rithms for this class. We showed how this class can have smoother
wavelets and yet demand lower computational cost. Then, we proved
that symmetric boundary extension is applicable though the filters
are non-symmetrical. Finally, we confirmed that the combined ap-
plication of these special wavelets with the proposed multiresolu-
tion algorithms can result in better image compression performances.
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