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ABSTRACT

Thispaper introducesanovel classof length-4 NV orthonormal scalar
wavelets, and presentsthetheory, implementational issues, and their
applications to image compression. Wefirst give the necessary and

sufficient conditions for the existence of this class. The parameter-

ized representation of filters with different lengths are then given.

Next, we derive new and efficient decomposition and reconstruc-

tion algorithms specifically tailored to this class of wavelets. We

will show that the proposed discrete wavelet transformations are

orthogonal and have lower computational complexity than conven-

tional octave-bandwidth transforms using Daubechies’ orthogonal

filters of equal length. In addition, we also verify that symmet-

ric boundary extensions can be applied. Finaly, our image com-

pression results further confirm that improved performance can be
achieved with lower computational cost.

1. INTRODUCTION

Orthogonality, smoothness, compact support, and symmetry of wa-
velet basis are very important properties in filter design. Orthogo-
nality is useful because it means that rate-distortion optimal quati-
zation strategies may be employed in thetransform domain and still
lead to optimal time-domain quantization (at least when the error
ismeasured in amean-square sense). The smoothness of wavelets
controls the noise in regions with constant background [5]. Also, a
higher degree of smoothness corresponds to better frequency local-
ization of thefilters[1]. If wavelets are compactly supported, the
corresponding lowpass and highpass filters have finite impul se re-
sponses, so that the summations in the fast wavelet transform are
finite. Symmetry allows the use of symmetric extension to pro-
cessimage borders. Aswe know, except the Haar basis, all real or-
thogonal wavelet bases with compact support are asymmetric [1].
On the other hand, smoother wavelets correspond to larger support
lengths; consequently, it will increase the computational complex-
ity. The question now is: Can we construct a class of orthonormal
wavelets that are smoother, compactly supported, and have low-
complexity decomposition and reconstruction implementations?
This paper will show that the above question is not only possi-
ble, but asoillustrate that better image compression performances
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can be achieved with lower computations. In addition, symmetry
boundary extensions can be applied for this class of orthonormal
wavelets; hence there are no border effectsin the decoded images.

2. PARAMETERIZATION OF A SPECIAL CLASSOF
LENGTH-4N ORTHONORMAL FILTER BANKS

Let Hyo(z) and H: (z) bethe z-transform of the lowpass and high-
passfiltersassociated with an orthonormal scalar wavelet. They are
conjugate quadrature (CQF) and power complementary filters[6],
i.e Hi(z) = —2*N T Hy(—2) and |Ho(2)]* + |H1(2)|*> = 1.
The polyphase components of Hy(z) will be denoted by Hoo(z)
and Hy1(z) such that

2N -1

_ . 1 _k
Ho(2) = Hoo(2") + 2~ 'Ho1(2%) = 7 > hyz
k=0

The polyphase components give the even and odd indexed coeffi-
cients of Ho(z) separately. Similarly, the polyphase components
of Hy(z) will be denoted by Hio(z) and Hi1(z) such that

2N—-1

_ 1 _
H1(Z) = H10(z2) + z 1H11(22) = ﬁ Z grz k,
k=0

where gv = (=1)* *hon 14, k = 0,1,...,2N — 1. The
polyphase matrix of a scalar wavelet filter can thus be defined as

e ],

N Hoo(z
Hp (z) = |: HOlEZ;

Animportant result in [7] isthat the polyphase matrix H,' (z) can
be factorized as

@

N-1
Hj/(z)=Ro [[ D(»)R;, @
j=1
where
|1 0 | cosa; —sina;
D(z) = [ 0 27! ]’ and - R; = [ sina; cosa; |’

forj =0,..., N — 1. Thislattice parameterization gives H) (z)
as a function of angles. Note that H,'(2) is of degree N — 1.
Therefore thefilters Ho(z) and H1(z) are of degree2N — 1. For



thefilter to be orthonormal and has at |east one vani shing moment,
it is necessary that Ho(1) = 1 and Ho(—1) = 0. Equivalently,
these conditions can be expressed in terms of the angles o, j =
0,1,...,N — 1, suchthat

N-1

a; =2nm +
Jj=0

%, nez. ©)

In this paper, we will investigate the construction of aclass of

orthonormal length-4 N scalar wavelet filters {h;, } .~ * satisfying
hoksr = (—1)*hok, k=0,1,...,2N —1. (4)

or
hoky1 = (=) hor, k=0,1,...,.2N-1.  (5)

Note that the filter satisfying (5) can be obtained by ‘flipping’ or
reversing the order of the filter satisfying (4), and vice versa.

The following theorem provides the necessary and sufficient
conditions on the o’s so that (4) or (5) holds:

Theorem 1. For anylength-4 N orthogonal scalar filter {m}‘“v !
with the lattice structure (2), it satisfies relation (4) or (5) iff ;'s
have, respectively, the following properties

ag; =2n;m, j=1,2,.... N—1, n;€Z,
_ (6)
ap = 71”/4,
or
ag; =2n;m, j=1,2,.... N—1, n;€Z,
@)
ap = 3r/4
Proof. Sufficient part: Supposethat a2 satisfy (4) (asimilar proof

holds for a; satisfying (5)). Using (2), we obtain

HY(z) = 2)Ry H D(2*)Raj+1.
b11(2?)  bia(2?) _ qN-1 2 ] .
Denote bt (#2) boa(22) | = [I;=5 D(2%)Rsj4a. Itisclear
from (1) that
Hypo(z) = (cosar —z~ Lsin a1)b11(22) +
(—sinag — 2 ! cos 0[1)b12(22),
Hopi(z) = (cosar+z -1 sina1)b11(z2) +
(—sin i + 271 cos a1 )bia(z?).

Thus, we have Hyo(z) = Hoi(—=z). Thisimplies that the filter
{h }:X 5" satisfies the relation (4).

Necessary part: If an orthogonal scalar filter {hx} Y, ' sat-
isfies the relation (4), then the polyphase matrix H2" (z) has the

form = =
[ |

In [2], G. Evangelista proved that such a matrix can be factorized
as

H2N( )

p

z)R1 H D(z R2]+1,

where ag = w/4. Using the fact D(2?) =

R1HD

By comparing it with (2), we obtain Ry; = I. Thus we have
Qj :2n]-7r,nj €Z. O

D(2)ID(z), wehave

H2N( )

» 2)Raj1.

2.1. Some Examples

From Theorem 1 and equation (3), one can obtain the parameter-
ized length-8 (when N = 2) filter as

ho = — Y2 Gin o0 by = —ho, hs = ? sin? o, ha = ho,
3 3
he = % sin 20, hs = —ha, hg = % cos® a, hr = he.

Clearly, thisfilter satisfies relation (5). If the parameter o isnot a
multiple of 7, we can verify that infr.(.)>0 |Ho(z)| > 0. There-
fore, the associated Wavelet will constitute an orthonormal basis of
L*(R). Whena = Z — L arcsin (1), thefilter denoted by S8(1)
has two vanishing moments and the corresponding wavelet has a
Holder exponent of 1.0094. When o = 1.42616, thefilter denoted
by S8(2) has only one vanishing moment, but has optimal transition
band with respect to the ideal “brickwall” filter.

For N = 3, the parameterized length-12 filter is given by
ho = g cos acos B cos(a + B),

hy = _? sin a cos 3 cos(a + ),

hs = Q sin® 8, he = —g cos 3 sin 3,

2

hs = ? sin a cos B sin(a + 3),

2
hio = % cos a cos Bsin(a + 3),

and hopy1 = (—1)%has,k = 0,...,5. When o = 1.5229 and
B = 1.6962, thefilter denoted by S12(1) has three vanishing mo-
ments, and has a Holder exponent of 1.0032 (if « = 4.3752 and
B = 4.8577, the filter has three vanishing moments, and a Holder
exponent of 1.2814). Whena = 1.5223 and 3 = 1.7129, thefilter
denoted by S12(2) has one vanishing moment and optimal transi-
tion band.

3. NEW MULTIRESOLUTION DECOMPOSITION AND
RECONSTRUCTION ALGORITHMSAND THEIR
PROPERTIES

Given any length-4N CQF {h: }; 21} ., that satisfies (4) or (5),

we generate alowpass filter {k, };X*} ., and two highpass fil-

ters { g}z X 54 and {g,, oL 420 Such that

by =hsr, gr=(-1)"hsk, g, =gs-k (8

Obviously, thetwo scaling functionscorresponding to {A }; X ) .,
and {h;, };¥*, ., formasymmetric pair at point 3. By equations
(4) and (8), it is easy to check the following relati ons hold:



Proposition 1.
Z hihyae =0, th2k+4z =0,
k k

nghkﬂl =0, ng£k+4l =0.
K %

For this special class of filter banks, we will present new mul-
tiresol ution decomposition and reconstruction algorithmswhich are
different from the traditional framework [3].

3.1. TheProposed Decomposition Algorithm
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Figure 1: Proposed multiresolution decomposition algoritm.

Let {z\"} betheinput data. As shown in Figure 1, the decimated
outputs after one level of decomposition are the reference signal
{2} and the detail signal {d\"}, where

1 0 1 0
‘rgn> = th—4n931(c ), ‘rgn>+1 = thfélnxl(c ),
k e

1 0 1 0
dgn> = ng—ﬁln‘rl(c >7 dgn)+1 = ng,z;nml(c )
k k

By Proposition 1, such a decomposition scheme generates an or-
thogonal transformation mapping {z'} — {z',d"}. Therep-
resentation matrix of the orthogonal transformation P is orthog-
ona, i.e. P~t = PT. This process is repeated recursively on
thereference signal. After L levels, we obtain the reference signal
{a:SLL)} with a resolution reduced by factor of 2% with respect to

{z\?}, and the detail signals {z{"'}, . .., {z{"}.

3.2. TheProposed Reconstruction Algorithm
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Figure 2: Proposed multiresolution reconstruction a gorithm.

Due to the orthogonality of the decomposition transformation, the
representation matrix of the reconstruction transformation is just

P7T. Giventhelevel-£ referencesignal {zEP} and detail signal {dg)},

we can reconstruct thereference signal {m%*”} atlevel £—1using
the following formulae (see Figure 2):

mgq) Z(hn_4kmgi> +En—4k‘rg€c>+1)

k
¢ ¢
+ E (gn—4kdgn) +9n,4kdgk>+1)'
k

Similarly, this process is applied recursively on the reference and
detail signals until we recover the original signal {z£?>}.

3.3. Computational Complexity

Oneimportant consideration in application isthe computational com-
plexity of applying a given filter, which directly relates to its im-
plementational efficiency. For most pratical applications, the dom-
inating factor for computational complexity isusually governed by
the number of multiplicationsinvolved, hencejustifyingit asamea-
sure of the computational cost of using awavelet filter.

In generdl, for alength-2 NV orthogonal filter (with no symme-
try), each output sample will require 2N multiplications during de-
composition or reconstruction using Mallat’s algorithms [3]. By
exploiting the specific properties in (4) or (5) and employing the
proposed multiresolution a gorithms, we can easily show that each
output sample now will only require 2N multiplications when us-
ing alength-4 IV filter belonging to this special class. Asmentioned
earlier, longer filtershave higher regul arity. Hence, thisspecial class
of orthonormal wavelets can possess greater smoothness without a
penalty on computation complexity.

3.4. Symmetric Boundary Extension

Let {ht}:N 5 _, bealength-4N CQF satisfying (4) or (5), and the
flters {gu} 2500, (B PV, and (g, Y5, satisy (8).
Although this special class of orthonormal wavelets are not sym-
metrical, we show that symmetric boundary extension can be ap-
plied when using the proposed multiresolution a gorithms.

Suppose that {z\” }2X =1 is an input sequence with an even
number of samples. We can perform a half-point symmetric exten-
sion asfollows:

ey 2, L-1,20,L1y..-,L2K—-2,L2K—1,TL2K,L2K+1,.--

9)

where
Top—1=xr and Zogikr = Tox-1—k- (10)
To show that symmetric boundary extension isapplicable, we only

need to provethat the output signalsare also symmetrical; i.e. prov-

ingz{t) =2 | asfollows:

() _ ()
th”kﬂ(—nﬂ) = Z ha—kyian1)
k k

(0) _ (0)
Z hkx37k+4(fn71) = Z hkx74+kf4(fn71)
k k

- .

(1) —
T -1 =

Similarly, we can show d&) = d(_lgn_l.



4. SSIMULATIONSAND RESULTS

Image coding experiments are performed by comparing the designed
length-8 and length-12 filters with the Daubechies' D8 and D12
wavelets. For fair comparisons, the same still image codec [4] was
used. From the PSNR performancesin Table 1, it can be concluded
that the designed length-8 and length-12 filters can generally out-
perform the D8 and D12 wavelets by up to 0.76 dB and 0.62 dB,
respectively.

Figure 3 portrays the subjective quality of the decoded ' Boat’
images at a compression 32:1 using D8 and S8(1). A careful com-
parison reveals some distinct differences between the two images:
boundary artifactsare completely removed by using symmetric ex-
tension with S8(1); and the white mast at the top center of the im-
age and some cables are also better preserved in the reconstructed
image using S8(1).

CR | D8 DIz SB8(1) S8()) Sixl) S12(0)
81 | 4057 4064 40.74 40.75 4073 40.77
16:1 | 37.14 37.25 3740 3743 3738  37.46
321 | 3388 3396 3425 3429 3422 3430
641 | 3084 3084 3133 3139 3130 31.39

128:1 | 2818 2814 2873 2875 2872 28.76
81 | 36.73 3719 3686 3705 3683 3704
16:1 | 3153 3191 3162 3179 3159 3178
321 | 2770 2801 27.88 27.98 2787 27.97
641 | 2502 2511 2523 2526 2522 2526

128:1 | 2353 2358 2371 2372 2371 2372
81 | 3848 3847 38./3 38./6 3873 38.77
16:1 | 3384 3384 3412 3416 3411 3417
321 | 3028 3033 3060 3061 3059 30.62
641 | 2760 2759 27.80 27.87 27.89  27.89

128:1 | 2548 2551 2576 2576 2576 2577
81 | 3610 3610 3631 3634 3631 3635
16:1 | 3261 3260 3288 3290 3287 3290
321 | 2997 3003 3039 3040 3038 30.40
64:1 | 27.88 2795 2838 2839 2837 2840

128:1 | 2501 2608 2665 2667 2664 2665

Table 1. Image compression performance comparisons of six or-
thogona filtersusing four 512 x 512 monochrome images, Lena,
Barbara, Boat and Goldhill (from top to bottom).

5. CONCLUSIONS

Inthispaper, weinvestigated aspecia classof orthonormal wavelets.
We provided the necessary and sufficient conditions to define this
class, and proposed new decomposition and reconstruction algo-
rithmsfor this class. We showed how this class can have smoother
waveletsand yet demand lower computational cost. Then, weproved
that symmetric boundary extension is applicable though the filters
are non-symmetrical. Finally, we confirmed that the combined ap-
plication of these special wavelets with the proposed multiresolu-
tion algorithms can result in better image compression performances.
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