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Abstract This paper introduces a mew tool
called “good multifilter properties” (GMPs) to help
us better understand the characteristics of a use-
ful multiwavelet (multifilter) system, with particu-
lar emphasis on the application to image compres-
sion. We first formulate the concept of an equiva-
lent system of scalar filters, in which we derive an
equivalent and sufficient representation of a given
multiwavelet system with multiplicity v in terms of
a set of v scalar filter banks. This relationship leads
the notion of GMPs which defines the desirable fil-
ter responses of the equivalent scalar filters. It is
then related back to the matriz filters as necessary
eigenvector properties for the refinement masks of
a given multiwavelet system. We further show how
the above ideas, when combined with a suitable sim-
ilarity transformation of the matrix filters, can lead
to an efficient and general framework for multi-
wavelet initialization. Finally, our simulation re-
sults verified that both orthogonal and biorthogo-
nal multiwavelets possessing GMPs, and using the
proposed pre-filtering technique, can give significant
improvements in image compression performance
and lower computational requirement when com-
pared with some popular scalar wavelets.
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1 Introduction

The recent spate of research activities in multi-
wavelets provides a good indication of the im-
portance and potential impact of multiwavelets
on signal processing. In spite of the extensive
theoretical research and successful application
of scalar wavelets, there remain gaps that need
to be bridged before multiwavelets can be used
both efficiently and effectively. It is also well-
known that multiwavelets can simultaneously
possess orthogonality, linear phase symmetry,
and a shorter support for a given number of
vanishing moments [2], and multiwavelets have
great potentials for applications such as im-
age compression and denoising. Having re-
alized this, it becomes critical to study and
better understand what factors will contribute
to good multiwavelets and their applications.
The main object of this paper is to introduce a
new analytical tool called good multifilter prop-
erties (GMPs) for both multiwavelet filter de-
sign and application.

A vector function ® := (¢1,...,¢,)", where
r is a fixed positive integer and ¢;,j =
1,2,...,r, are compactly supported functions
in L?(R), is called an orthogonal multiscaling
function if it generates an orthogonal multireso-
lution analysis with multiplicity r [3], such that
it satisfies the following refinement equation:

B(zx) =Y Hp®(2z - k), (1)
kEZ

where H, is a finitely supported sequence of
r X7 matrices. The corresponding multiwavelet



function vector ¥ = (¢1,... ,1, )T satisfies

(z) =) Gp®(2z — k), (2)

kEZ

for some finitely supported sequence of r x r
matrices G..

In the Fourier domain, the two-scale refine-
ment equations (1) and (2) can be written as

B(w) = H(w)dWw) (3)
T(2w) = Gw)®(w), (4)

where f—I\(w) =13 ey Hre ™ and G(w) ==
%Zkez Gre % are the matriz lowpass and
matriz highpass frequency responses, respec-
tively. In order to ensure perfect reconstruc-
tion (PR), the matrix filters must also satisfy
the following relations:

H(w)H (v) + H(wtm)H (wtr) = T
H(w)G (w) + H(w+m)G (wtT) = 0, (6)
G(w)G () + G(w+m)G (wtm) = 0

where the superscript * denotes conjugate
transpose.  Specifically, a matrix sequence
{H}\} that satisfies (5) is called a conjugate
quadrature filter (CQF).

The rest of the paper is organized as follows.
Sec. 2 first establishes the relationship between
a given multiwavelet system and its equivalent
system of scalar filters. It then introduces the
notion of GMPs, both in the scalar and mul-
tifilter frameworks. Sec. 3 proposes an effi-
cient pre-filtering technique which works well
with multifilters possessing GMPs. Finally
Sec. 4 shows that the proposed ideas can lead
to significant improvement in image compres-
sion performance.

4+
4+

2 Equivalent Scalar Filters

and GMPs

In order to better understand the multiple-
input multiple-output (MIMO) relationship of
a multifilter system, we first formulate the con-
cept of an equivalent system of scalar filters to
represent a given multifilter in terms of a set of

equivalent scalar filter banks. For a given mul-
tifilter P as depicted in Fig. 1 (a), the following
proposition will illuminate the above concept
via a multiplexing operation:

Proposition 1 Consider a multiwavelet sys-
tem with multiplicity » > 1 that has r input
streams, ®1,T9,...,x,, and T output streams,
Y1,Yo, - Yy Then, there always exzists an
equivalent filter bank system with o set of r
scalar (wavelet) filters, py, Py, ..., Dy, sSuch that
the output stream 1y, is a filtered version of a
multiplezed input stream, v, with the scalar fil-
ter py, for allk =1,2,...,r.

The MIMO relation of a multiwavelet filter
bank system with multiplicity » can be rep-
resented as the convolution of the r input
streams, ¢y, k = 1,2,...,r, with the r X r ma-
trix filter impulse response P. In the Fourier
domain, it can be written as

Y (w) = P(w)X (), (8)

where 13(w) =3 1c7 Pee™% is the filter’s fre-
quency response, X\(w) = (Z1(w), ..., B (w))T,
and Y (w) = (7, (w), ..., ¥, (). Let Py :=
(i ()i j=1: £ € Z, ®p, = {xk(n)}nez, and
Yr = {yr(n)}nez. For the multiwavelet sys-
tem shown in Fig. 1 (a), we have

ye(n) =Y prj(Ozj(n—10), neZ,

€7 j=1
(9)

for all £ = 1,2,...,7. In the meantime, as-
sume that we already have the multiple (vec-
tor) input streams 1, s, ..., &,, which are fil-
tered to produce the vector output streams
Y1,Y9, - Y,. An efficient technique for gen-
erating the vector input streams will be given
later in Sec. 3. Fig. 1 (b) shows the equivalent
and sufficient framework, from an input-output
filtering viewpoint, that replaces the multifilter
P with a cascade of a multiplexer, a system of
equivalent scalar filters py,...,p,, and down-
samplers.

The object now is to determine the multiple-
input-single-output (MISO) multiplexer oper-
ator, MUX, as well as the corresponding re-
lation of the set of equivalent scalar filters
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Figure 1: Tlustration of the concept of an equivalent system of scalar filters: (a) Multifilter frame-
work, and (b) Equivalent scalar filter framework with a multiplexer and downsamplers.

with the matrix filter P. Suppose that we
now filter the single multiplexed stream v =
{v(n)}nez independently using each of the r
scalar (wavelet) filters, p, = {pr(n)}nez,k =
1,2,...,r, such that:

) = S (Do — ), (10)

LEZ

r—1
= > pellr + jv(rn — (br +j)),

LeZ j=0

for n € Z, and the scalar filter impulse re-
sponses are given by some combinations of the
set {pr;(O)},LE€Z,j,k=1,2,...,r.

In most signal processing applications, the
matrix filter P is usually either a lowpass fil-
ter H, or a highpass filter G. Let H, =
(hk,j(ﬁ))z,jﬂ and Gy = (gkﬂ-(Z));’j:l. It can
be shown [7] that the equivalent scalar filters
hi = {hi(n)}ncz and g, = {gy(n)}nez, for

k =1,...,r, are related to the matrix filters
H and G by
hk(f’l" 4+ — 1) hkﬂ'(f),
gellr+5—1) = gi;(0), (11)

where £ € Z,j = 1,2, ...,r, and the multiplexer
operation, MUX is given by

v(rn+j —1) = z;(n), (12)

for n € Z, and j = 1,2,..,r. Denote
hip(w) = %Z hr(n)e 7" and g(w) :=
kEZ

% > gk(n)e_j“m, k=1,2,...,r. We can fur-
keZ

ther show that

keZ \t=1
— Z (Z hs,t(k)ejrkw> efj(tfl)w.
t=1 \k€Z

Hence, it is shown that any multifilter with a
multiplicity 7 can be sufficiently represented by
a set of r equivalent scalar filters, each consist-
ing of r polyphases, where the t** polyphase
of the s'* equivalent scalar filter is given by
>okez hsp(k)e 9™ forall s,t =1,2,... ,r. A
similar relationship also holds for g,(w). In
summary, the equivalent system of scalar fil-
ters guarantees an identical MIMO relation-
ship with that of the multifilters.

The above relationship provides us with a
new framework to design a multifilter system
by imposing desirable filter properties on the
set of equivalent scalar filters. This motivates
the idea of GMPs. For simplicity of exposi-
tion, but without loss of generality, we consider
only multiwavelets with multiplicity » = 2. A



given multiwavelet system with multiplicity 2
is said to possess a GMP order (dy, dy, e1) if the
equivalent lowpass and highpass scalar filters,
hi and g;, for £ = 1,2, satisfy the following
GMP conditions:

Q) B0) =60 vr=01,...,d 1,

Gy B =0, v=0,1,....d 1,
v=20,1,...,e1 — 1,

(i) g, (0) =0,
where the superscript ) denotes the v*-order
derivative, and dj,ds,e; are positive integers.
These conditions ensure that hy and g, behave
as lowpass and highpass filters, respectively.

Now it will be useful to understand the idea
of GMPs directly in terms of some properties of
the matrix filters. Specifically, we will investi-
gate the eigenvector characteristics of matrix
filters that correspond to multiwavelets pos-
sessing GMPs. Since H (0) satisfies Condition
E and has a vanishing moment of at least order
one, there exists a vector v such that

v H(rv) = 6,007, veZ/2Z,  (13)
where 0,, = 1 only if m = n; otherwise, it
is equal to 0. By setting w = 0 in the CQF
relation (5) and multiplying it with v from
the left sides, we have

WTHO)H(0) + v H(n)H(r) =v". (14)

Clearly, by applying Eq. (13) into (14), v is
a right eigenvector of /ﬁ(O) corresponding to
an eigenvalue A = 1. Since A\ = 1 is a sim-
ple eigenvalue of ﬁ(()) and the multiwavelet
system possesses GMP condition (i), we have
v = (1,1)7. Interestingly, from Eq. (3), we
have, up to a constant multiple,

d0)=v=(1,1" (15)

Furthermore, since the system also possesses
GMP condition (ii), it implies that H(0) has
an eigenvector (1,—1)7 corresponding to an
eigenvalue A = 0, which subsequently implies
that the matrix /ﬁ(O) is singular. From Eq. (6)
and the GMP condition (iii), it is clear that
v = (1,1)7 is also an eigenvector of (A}'(O) cor-
responding to an eigenvalue A = 0. Therefore
by analyzing the eigenvector properties of the

matrix refinement masks, we can gain an in-
sight into the GMPs of a multiwavelet system.
A step-by-step procedure for determining the
GMP order of a multifilter system is given in
[7].

3 DMultiwavelet Filter Con-
struction and Initialization

In this section we show that the proposed
idea of GMPs does not only provide a
useful tool to analyze a multifilter system,
but it can also result in the construction
of new classes of symmetric-antisymmetric
orthogonal multiwavelets (SAOMWSs) and
symmetric-antisymmetric biorthogonal multi-
wavelets (SABMWs) that are suitable for im-
age compression. Next, we will address the
problem of multiwavelet initialization or pre-
filtering, which is indirectly also motivated by
the idea of GMPs.

3.1 Construction of Multiwavelets
with GMPs

It is noted that Eq. (15) imposes a rather
restrictive condition on the design of multi-
wavelets. However, it is well-known that we
can perform a change of basis by applying a
similarity transformation to the matrix filters.
Let = U® and ¥ = U¥ be the new!
multiscaling and multiwavelet function vectors
with the corresponding new matrix filters
H':=UHU", G'=UGU".

Because of the GMP requirement in Eq. (15),
we choose an orthogonal matrix U such that

:I\)ﬂ(()) is parallel to vector (1,1)7. This leads
us to the following relation:

HOU ‘1,1 =v'1,1)7". (16)

Note that such a similarity transformation still
guarantees that { H*, G*} also satisfies the PR
criteria (5)—(7). Therefore we can say that

'For the rest of the paper, the superscript ¥ will de-
note the new (similarly transformed) version of a given
multiwavelet filter bank system.



{H,G} possesses a GMP order (di,ds,e;) if
{H* G*} possesses a GMP order (dy,ds, e1).

The example below shows a class of length-4
multiwavelets possessing GMPs that are used
in our image compression simulations later.
The matrix lowpass filters, when parameter-
ized by «, are given as follows:

1 o}
_ 241 241
Ho = (7T,
a2+l a2+1
a? o
P 3
Hl — a_;rQl acjrl , (17)
a2+l a2+1

H; = SH.S, and H3 = SH;S, where S =
diag(1,1). The corresponding matrix highpass
filters are given by Gy = (—1)*"'H;_J, for
k=0,1,2,3, where J is a reversal matrix, i.e.,
J = antidiag(1,1). By varying the parameter
o, we can obtain multiwavelets with different
properties. For example, when a = 4 + /19,
the multiwavelet SA4(1) has an approximation
order of two and a GMP order (1,1,1); when
a = 4 + /15, the multiwavelet SA4(2) has an
approximation order of one and a GMP order
(1,2,1); and when o = 6.981578516, the mul-
tiwavelet SA4(3) has an approximation order
of one, a GMP order (1,1,1), and the sharpest
cuttoff frequency.

The idea of GMP has also been extended to
constructing new biorthogonal multiwavelets
(SABMWs) [5]. As examples to demonstrate
their image compression performance, three
members from this family will be analyzed in
Sec. 4. They are the SA(4/4), SA(5/5), and
SA(9/7), in which the numbers in brackets rep-
resent the supports of the primal and dual ma-
trix lowpass filters, respectively.

3.2 Multiwavelet Initialization

Another topic that is of critical importance for
successful application of multiwavelets is the
problem of multiwavelet initialization or pre-
filtering. Several interesting proposals have
been reported to address this problem (e.g.
[10]), but they, however, do have several draw-
backs such as over-sampling of the input data.
In this subsection, we will present an effi-
cient and general solution for multiwavelet pre-
filtering that is orthogonal and it provides a

non-redundant? representation of the input sig-
nal. Motivated by the proposed concepts of
GMPs and equivalent scalar filters, we have de-
signed the pre-filtering process in such a way so
that it works in tandem with multifilters pos-
sessing GMPs.

Recall from Fig. 1 (b) that the multiplexed
stream v is fed independently into each of
the equivalent scalar filters. It is conceptu-
ally identical to consider v as the given in-
put signal that needs to be demultiplexed into
multiple input streams, &, before they are de-
composed further by the designed multifilters.
This process of generating the multiple input
streams from a single stream is called multi-
wavelet initialization or pre-filtering. The rela-
tionship that defines the demultiplexer opera-
tion is given in Eq. (12) as a dual of the mul-
tiplexer operation. For the case of multiplicity
r = 2, we essentially pair up the given signal
v into input vector streams, which can be as-
sumed to be locally constant. From Eq. (16),
it becomes clear that the appropriate pre-filter
is then given by U !, where

7 — cosf) —sinf sinf cosf
“\sind  cos® ) % \cos® —sing)’

with § = —% when $1(0) = 0, or otherwise
_ —1 ( $2(0)
=% —tan ! <$j—(0)> for 6 € (=%, %]. A pro-

cedure for choosing the better pre-filter U~ is
provided in [7]. For all the examples of multi-
wavelets used in the simulations, we employed
the first pre-filter of Eq. (18).

In summary, the following few points about
the proposed pre-filtering technique are worth
highlighting. First, the pre-filter is very sim-
ple and hence efficient in terms of low com-
putational complexity. Specifically, for our
classes of symmetric-antisymmetric orthogonal
and biorthogonal multiwavelets, the pre-filter
can be expressed as

sl w

which involves practically no arithmetic com-
putations at all since the normalization factor

2Such a compact representation is critical to appli-
cations such as image compression.



1/4/2 can be absorbed into the first level of
multiwavelet decomposition. Second, although
the proposed multiwavelet initialization frame-
work is motivated by the idea of GMPs, it is
very robust in the sense that it is applicable to
any multifilter system, regardless of whether
it possesses GMPs or not. Third, it is obvi-
ous that U ™! is orthogonal; this ensures that
the orthogonality and approximation order of
the designed multifilters are well preserved af-
ter pre-filtering. Finally, it is noted that, af-
ter pre-filtering, we actually apply the original
multifilters that are symmetric/antisymmetric,
instead of the new multifilters which may have
lost their linear phase property after similarity
transformation. This allows us to employ sym-
metric extension techniques [9] (which give bet-
ter results than using periodic extension) at the
image boundaries because both SAOMWSs and
SABMWs are linear phase multifilters. A de-
tailed explanation, together with illustrations,
on how to integrate the proposed pre-filtering
technique with multiresolution image decom-
position/reconstruction is given in [7].

4 Performance Analysis

In this section, we will investigate the per-
formance of both SAOMWs and SABMWs,
and the proposed pre-filtering technique in im-
age compression application. Five multifilters,
namely, SA4(1), SA4(3), SA(4/4), SA(5/5),
and SA(9/7) were used in our simulations.
We also included the results using the fol-
lowing scalar wavelets: Daubechies’ orthog-
onal maxflat 8-tap filter (D8), Daubechies’
biorthogonal 9/7 filter (D(9/7)) [1], and Vil-
lasenor’s biorthogonal 18/10 filter (V(18/10))
[8]. For a fair comparison of the contribu-
tions of different filters, we have employed the
same still image codec [4] in all the simulations
(other codecs such as [6] also gave similar rel-
ative performances).

Table 1 shows the peak signal-to-noise ratios
(PSNRs) of the reconstructed images. Four
standard monochrome images, namely, Lena,
Barbara, Boat, and Goldhill have been tested
over five different compression ratios. The bold

value in each row of the table indicates the best
PSNR value for a particular CR-image pair.
It is evident that SAOMWSs have consistently
outperformed the scalar wavelet D8 by a signif-
icant margin of up to 0.88 dB. Our SABMWs
have also performed better than D(9/7), one
of the most widely used scalar wavelets for im-
age compression, and V(18/10) by up to 0.75
dB and 0.6 dB, respectively. Subjective per-
formance comparisons are illustrated in Fig. 2.
It is clear that the designed multifilters pos-
sessing GMPs can better preserve the texture
of the table cloth and trousers in the Barbara
image.

In addition to improved image compression
performance, we also achieved lower computa-
tional complexity [5]. For example, the appli-
cation of conventional octave-scale decompo-
sition using scalar wavelets D8, D(9/7), and
V(18/10) will demand a higher computational
cost by a factor of 2.67, 1.5, and 2.33, respec-
tively, when compared with using the combina-
tion of the multiwavelet SA(4/4) and the pro-
posed efficient pre-filtering framework.

5 Conclusions

We introduced a new tool called “good mul-
tifilter properties” (GMPs) that can provide
us with better insights into the analysis, con-
struction, and application of multiwavelet fil-
ters. For analysis, we established the concept
of an equivalent system of scalar filters, which
provides a sufficient and equivalent representa-
tion of the multiple-input multiple-output re-
lationship of a given multifilter system. Two
classes of symmetric-antisymmetric orthogo-
nal and biorthogonal multiwavelets possess-
ing GMPs were also constructed. For effi-
cient application of multiwavelets, we proposed
an orthogonal pre-filtering framework that can
maintain the compact representation of a given
input signal. Finally, extensive image com-
pression simulations confirmed that our pro-
posals can provide significant improvements in
both objective and subjective image compres-
sion performance, and lower total computa-
tional requirement, when compared with us-



Image | CR || D8 | D(9/7) | V(18/10) || SA4(1) | SA4(3) | SA(4/4) | SA(5/5) | SA(9/7)
8:1 40.57 | 41.01 41.08 40.85 40.87 41.01 41.08 41.18
16:1 37.14 | 37.83 37.93 37.54 37.59 37.84 37.96 38.04
Lena 32:1 33.88 | 34.74 34.83 34.42 34.47 34.77 34.88 34.98
64:1 30.84 | 31.75 31.86 31.46 31.50 31.83 31.85 31.96
128:1 || 28.18 | 29.04 29.08 28.75 28.78 29.05 29.05 29.09
8:1 | 36.73 | 37.45 | 38.02 | 37.25 | 3743 | 37.71 | 37.82 | 38.09
16:1 31.53 32.10 32.50 32.13 32.27 32.46 32.56 32.85
Barbara | 32:1 27.70 | 28.13 28.32 28.30 28.39 28.55 28.53 28.72
64:1 25.02 | 25.38 25.30 25.56 25.59 25.56 25.68 25.90
128:1 || 23.53 | 23.77 23.78 23.96 23.98 24.05 23.97 24.02
8:1 38.48 39.11 39.23 39.12 39.20 39.43 39.42 39.44
16:1 33.84 | 34.45 34.71 34.49 34.55 34.86 34.83 34.94
Boat 32:1 30.28 | 30.97 31.05 30.87 30.93 31.15 31.15 31.25
64:1 27.60 | 28.16 28.18 28.10 28.12 28.31 28.30 28.33
128:1 || 25.48 | 25.90 25.95 25.83 25.85 25.99 25.99 26.01
8:1 36.10 | 36.55 36.67 36.57 36.61 36.73 36.69 36.83
16:1 32.61 33.13 33.19 33.14 33.18 33.29 33.26 33.42
Goldhill | 32:1 29.97 | 30.56 30.63 30.60 30.62 30.77 30.73 30.75
64:1 27.88 | 28.48 28.56 28.52 28.55 28.68 28.65 28.66
128:1 || 25.91 26.73 26.81 26.76 26.79 26.88 26.86 26.96

Table 1: Image compression performance comparisons of (bi)orthogonal scalar filters D8, D(9/7)
and V(18/10), and (bi)orthogonal multifilters SA4(1), SA4(3), SA(4/4), SA(5/5), and SA(9/7) for
four 512 x 512 monochrome images and at five different compression ratios (CR).

ing some popular scalar wavelets. Specifically,
some members of our designed multiwavelets
possessing GMPs can outperform the scalar
wavelets Daubechies’ biorthogonal 9/7 and Vil-
lasenor’s biorthogonal 18/10 by up to 0.75 dB
and 0.6 dB, respectively.
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Figure 2: Barbara image: (a) original; (c) using D(9/7) at 32:1; (e) using SA(4/4) at 32:1; (b),(d),(f)
zoom-in versions of (a), (c) and (e), respectively.




