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For compactly supported symmetric–antisymmetric orthonormal multiwavelet
systems with multiplicity 2, we first show that any length-2N multiwavelet
system can be constructed from a length-(2N + 1) multiwavelet system and
vice versa. Then we present two explicit formulations for the construction of
multiwavelet functions directly from their associated multiscaling functions. This
is followed by the relationship between these multiscaling functions and the scaling
functions of related orthonormal scalar wavelets. Finally, we present two methods
for constructing families of symmetric–antisymmetric orthonormal multiwavelet
systems via the construction of the related scalar wavelets. 2000 Academic Press

1. INTRODUCTION

The study of multiwavelets was first initiated by Goodmanet al. [8] in 1993, and
since then multiwavelets have received considerable attention from the wavelets research
communities both in theory [1, 2, 6–11, 15–18] and in applications such as signal
compression and denoising [19, 21, 24]. The main motivation for multiwavelets is that
they can simultaneously possess desirable properties such as symmetry, orthogonality,
and shorter support for a given approximation order, which are not possible in any real-
valued scalar wavelet [4]. One of the earliest and most popularly used multiwavelets
with multiplicity 2 is the GHM multiwavelet which was constructed by Geronimoet al.
[6, 7] using fractal interpolation. The multiscaling functions of the GHM multiwavelet
are both symmetric and orthonormal. Later, by imposing Hermite interpolating conditions,
Chui and Lian [1] constructed symmetry–antisymmetric orthonormal multiwavelets with
particular emphasis on the maximum order of polynomial reproduction and gave examples
for length-3 and length-4 multiwavelets. In our preceding paper [21], we introduced
another class of symmetric-antisymmetric orthonormal multiwavelets which possess a new
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property called the good multifilter properties (GMP) and demonstrated that they can be
useful for image compression. In this paper, we will further the study of this class of
multiwavelets and expound its relationship with related orthonormal scalar wavelets.

We begin with some basic theory and notations to be used throughout this paper. For
a multiwavelet system with multiplicityr, the vectorφ(x) = (φ1(x), . . . , φr(x))

T is a
compactly supported orthonormal scaling vector generating a multiresolution analysis
(MRA) {Vj }j∈Z of L2(R) with

· · · ⊂ V−1⊂ V0⊂ V1⊂ · · · ⊂ L2(R),

whereVj := {f :f (2−j ·) ∈ V0}, j ∈ Z. The vectorφ has the following properties:

– φ satisfies arefinement equation

φ(x)=
∑
k∈Z

P kφ(2x − k), (1.1)

for some finite sequence{P k} of r × r matrices.
– The integer shifts{φi(· − k) : k ∈ Z, i = 1, . . . , r} constitute an orthonormal basis

of V0.

Associated withφ is an orthonormal multiwavelet vectorψ(x)= (ψ1(x), . . . ,ψr(x))
T

with the following properties:

– There exists a finite sequence{Qk} of r × r matrices such that

ψ(x)=
∑
k∈Z

Qkφ(2x − k). (1.2)

– The integer shifts{ψi(· − k) : k ∈ Z, i = 1, . . . , r} constitute an orthonormal basis
of W0, whereW0 is the orthogonal complement ofV0 in V1.

We will refer to φi ’s and ψi ’s as the multiscaling and multiwavelet functions,
respectively, and the matrix sequences{P k} and {Qk} as the lowpass and highpass
sequences, respectively. We also say that the pair{P k,Qk} (or {φ,ψ}) generates an
orthonormalmultiwavelet system.

The Fourier transforms of sequences{P k} and {Qk}, i.e.,P (ω) := 1
2

∑
k∈ZP ke−jkω

andQ(ω) := 1
2

∑
k∈ZQke

−jkω, j = √−1, will be referred to as the refinement mask
and the wavelet mask, respectively. The orthonormality ofφ andψ implies the following
perfect reconstruction (PR) conditions,

P (ω)P ∗(ω)+P (ω+ π)P ∗(ω+ π)= I r×r (1.3)

P (ω)Q∗(ω)+P (ω+ π)Q∗(ω+ π)= 0r×r (1.4)

Q(ω)Q∗(ω)+Q(ω+ π)Q∗(ω+ π)= I r×r , (1.5)

where the superscript∗ denotes the conjugate transpose. In addition, the above three
equations are equivalent to the following equations,∑

k∈Z
P kP

T
k+2i = 2δi,0I r×r (1.6)
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∑
k∈Z

P kQ
T
k+2i = 0r×r (1.7)

∑
k∈Z

QkQ
T
k+2i = 2δi,0I r×r , (1.8)

for i ∈ Z, where

δi,j =
{

1, i = j
0, otherwise.

Specifically, the sequence{P k} which satisfies (1.3) or (1.6) is called a conjugate
quadrature filter (CQF). In order to distinguish it from the usual CQF in the scalar setting,
we will refer to{P k} as amatrix CQFthroughout this paper.

The transition operator forP (ω) is defined as

TPH (ω) := P
(
ω

2

)
H

(
ω

2

)
P ∗
(
ω

2

)
+P

(
ω

2
+ π

)
H

(
ω

2
+ π

)
P ∗
(
ω

2
+ π

)
. (1.9)

This operator is useful for characterizing the orthonormality ofφ. The refinement function
vectorφ is orthonormal if and only if{P k} is a matrix CQF and its transition operator
TP satisfiesCondition E(see [17]). We say that a square matrixM (or a linear operator)
satisfies Condition E if its spectral radiusρ(M) ≤ 1 with 1 being the only eigenvalue of
M on the unit circle and it is simple.

In this paper, we will focus on a class of symmetric–antisymmetric orthonormal
multiwavelet systems with multiplicityr = 2, whose members have finite and real-valued
lowpass sequences{P k}Lk=0 satisfying the following:

P 0 andPL are nonzero matrices (1.10)

P k = SPL−kS, k = 0,1, . . . ,L, whereS = diag(1,−1) (1.11)

P (0)=
[

1 0

0 λ

]
, |λ|< 1. (1.12)

Collectively, we refer to the above conditions asCondition SAfor easy referencing.
The second condition (1.11) implies that the corresponding multiscaling functions form

a symmetric–antisymmetric pair as shown in the following [1]:

P k = SPL−kS, k = 0,1, . . . ,L

⇐⇒ P (ω)= SP (−ω)Se−jLω
⇐⇒ φi(x)= (−1)i−1φi(L− x), i = 1,2. (1.13)

The orthonormality ofφ also implies that̂φ1(0)= 1 andφ̂2(0)= 0.
The third condition (1.12) is a necessary condition [3, 13] for any lowpass sequence

satisfying (1.10) and (1.11) (or the corresponding multiscaling function vector) to generate
a MRA.

Note that for{P k}Lk=0, the transition operatorTP is a linear operator onHL, whereHL
is the space of allr × r matrices whose entries are trigonometric polynomials such that
their Fourier coefficients are supported in[−L,L].
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We shall adopt the following notations and assumptions throughout for ease of
exposition. First we define the following orthogonal matrices:

U = 1√
2

[
1 −1

1 1

]
, S =

[
1 0

0 −1

]
, A=

[
0 1

1 0

]
.

There are frequent occasions where we apply similarity transformations to given matrices
using the transition matrixU and then the reverse transformations. We shall use the
superscript] for denoting the matrix obtained by applying the similarity transformation
with U as the transition matrix. The same superscript will be used to represent the elements
of the resultant matrix as well as the multiscaling functions and the multiwavelet functions.
For example, we have

P
]
k =UP kU−1, (1.14)

whereP k = (pij (k))2i,j=1 andP ]k = (p]ij (k))2i,j=1.
The rest of the paper is organised as follows. In Section 2, we establish several results

on matrix CQFs, in particular, the relationship between even- and odd-length matrix CQFs
satisfying Condition SA. In Section 3, two explicit formulations which can be used to
derive the highpass sequence{Qk} directly from the corresponding lowpass sequence{P k}
are given. In Section 4, the relationship between orthonormal scalar wavelets and a class of
symmetric–antisymmetric orthonormal multiwavelet systems is first established. We then
provide a procedure for constructing families of multiwavelet systems from related scalar
wavelets with examples given for length-4 and length-6 multiwavelet systems.

2. SOME RESULTS ON MATRIX CQFs

The purpose of this section is to present several results on matrix CQFs satisfying
Condition SA. In particular we give an intrinsic characterization of the relationship
between even- and odd-length matrix CQFs. We will prove that length-2N and length-
(2N + 1) matrix CQFs satisfying Condition SA can be obtained from one another. To this
end, we find it convenient to change the matrix CQF and its refinement mask using the
orthogonal matrixU . First of all, asU is orthogonal, it is clear [1] that if{P k}Lk=0 is matrix
CQF, then{P ]k}Lk=0 is also a matrix CQF.

Noting thatA = USU−1, the following lemma on the matrix sequences{P k}Lk=0 and
{U ]k}Lk=0 and their corresponding masks can be easily established.

LEMMA 1. The following four statements are equivalent:

(i) P k = SPL−kS, k = 0,1, . . . ,L.
(ii) P

]
k =AP ]L−kA, k = 0,1, . . . ,L.

(iii) P (ω)= SP (−ω)Se−jLω.
(iv) P ](ω)=AP ](−ω)Ae−jLω.

From a given matrix CQF,{P k}Lk=0, satisfying Condition SA, one can generate other
matrix CQFs satisfying Condition SA. The following lemma gives three such possible
ways.

LEMMA 2. Let {P k}Lk=0 be a matrix CQF satisfying Condition SA. Then each of the
following matrix sequences,
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(i) {SP k}Lk=0,
(ii) {P kS}Lk=0,
(iii) {SP kS}Lk=0,

also forms a matrix CQF satisfying Condition SA.

Proof. Here we show the proof for case (i). The proof for the other two cases is similar.
LetRk := SP k , k = 0,1, . . . ,L. Then

L−2i∑
k=0

Rk(Rk+2i )
T = S

(
L−2i∑
k=0

P kP
T
k+2i

)
S = 2δi,0I2×2, i ∈ Z,

which means that{Rk}Lk=0 forms a matrix CQF.
Next, the sequence{Rk}Lk=0 clearly satisfies condition (1.10). For condition (1.11), we

have

Rk = SP k = S(SPL−kS)= SRL−kS, k = 0,1, . . . ,L.

Finally,R(ω)= SP (ω) and

R(0)= SP (0)=
[

1 0

0 −λ

]
,

where |λ| < 1. Thus, Condition (1.12) is satisfied. The matrix CQF{Rk}Lk=0 satisfies
Condition SA as a result.

Case (iii) in the above lemma is actually obtained by applying a similarity transformation
of eachP k with S as the transition matrix. This corresponds to reversing the order of matrix
coefficients in the matrix CQF.

Next we will establish the relationship between the even-length and odd-length matrix
CQFs satisfying Condition SA. Before we proceed further, consider the following lemma.

LEMMA 3. Let {P k}2Nk=0 be an odd-length lowpass sequence satisfying Condition SA.
Then one of the following statements holds,

(i) P
]
0=

[
0 α1

0 α2

]
, or (ii) P

]
0=

[
α2 0

α1 0

]
,

whereα1= p11(0)− p21(0) andα2= p11(0)+ p21(0).

Proof. The CQF condition (1.6) and the Condition SA implyP 0P
T
2N = 02×2 and

P 2N = SP 0S, respectively. Consequently, we have

p2
11(0)= p2

12(0), p2
21(0)= p2

22(0), and p11(0)p21(0)− p12(0)p22(0)= 0.

Clearly, there are two possible cases:

– p12(0)= p11(0), p22(0)= p21(0). This impliesP ]0 has the form in (i).
– p12(0)=−p11(0), p22(0)=−p21(0). This impliesP ]0 has the form in (ii).
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Note that if we precede the similarity transformation ofP 0 using the matrixU with
another similarity transformation using transition matrixS, i.e.,P ]0 = USP 0SU

−1, then
applying the result for the second case actually gives rise to aP

]
0 of the form in Lemma 3(i).

Hence, we will say that an orthonormal multiscaling function vectorφ is unique if its
lowpass sequence{P k} is unique up to the similarity transformation ofP k ’s with one of
the following three orthogonal matricesS,−S, or−I2×2. In what follows, for odd-length
orthonormal multiwavelet systems satisfying Condition SA, we always assume thatP

]
0 has

the form in Lemma 3(i).
Let Ea,b denote the matrixeaeTb , a, b ∈ [1,2], and ek denote thekth unit column

2-vector.

THEOREM 1. Let {P e,k}2N−1
k=0 be an even-length matrix CQF which satisfies Condition

SA. Construct the matrix sequence{P ]o,k}2Nk=0 from {P ]e,k}2N−1
k=0 using the following rules:

P
]
o,k =


P
]
e,0E1,2, k = 0

P
]
e,k−1E2,1+P ]e,kE1,2, 0< k < 2N

P
]
e,2N−1E2,1, k = 2N .

(2.1)

Then{P o,k}2Nk=0 is also a matrix CQF which satisfies Condition SA.

Proof. From the definition ofP ]o,k in (2.1), we obtain

P ]o(ω)= P ]e(ω)M(ω), (2.2)

where

M(ω)=
[

0 1

e−jω 0

]
(2.3)

is a unitary matrix. To show that{P o,k}2Nk=0 is a matrix CQF is equivalent to showing that
P
]
o(ω) satisfies (1.3). We have

P ]o(ω)(P
]
o(ω))

∗ +P ]o(ω+ π)(P ]o(ω+ π))∗
= P ]e(ω)M(ω)M∗(ω)(P ]e(ω))∗ +P ]e(ω+ π)M(ω+ π)M∗(ω+ π)(P ]e(ω+ π))∗
= P ]e(ω)(P ]e(ω))∗ +P ]e(ω+ π)(P ]e(ω+ π))∗
= I2×2.

We note here that

AM(ω)= e−jωM(−ω)A. (2.4)

Applying Lemma 1(iv) forP ]e(ω), we have from (2.2) and (2.4)

P ]o(ω)=AP ]e(−ω)Ae−j (2N−1)ωM(ω)

=AP ]e(−ω)e−jωM(−ω)Aejωe−j2Nω

=AP ]e(−ω)M(−ω)Ae−j2Nω

=AP ]o(−ω)Ae−j2Nω.

Therefore, by Lemma 1,{P o,k}2Nk=0 satisfies condition (1.11). Given thatP e(0) has the
form (1.12), one can obtainP o(0) = P e(0)S = diag(1,−λ), where|λ| < 1. It is easy to
see that (1.10) is satisfied. Thus{P o,k}2Nk=0 satisfies Condition SA.
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FIG. 1. Relationship between even- and odd-length matrix CQFs{P ]e,k} and {P ]o,k}. Note here identical
columns are aligned vertically and marked with arrows.

Remark 2.1. Denote11= (E11−E12+E21−E22)/2,12= (E11+E12−E21−
E22)/2. Under the assumption of Theorem 1, the matrix sequence{P o,k}2Nk=0 is given by

P o,k =

P e,012, k = 0,
P e,k−111+P e,k12, 0< k < 2N ,
P e,2N−111, k = 2N .

(2.5)

THEOREM 2. Let {P o,k}2Nk=0 be an odd-length matrix CQF which satisfies Condition
SA. Construct the matrix sequence{P ]e,k}2N−1

k=0 from {P ]o,k}2Nk=0 using the following rules:

P
]
e,k = P ]o,kE2,1+P ]o,k+1E1,2, k = 0,1, . . . ,2N − 1. (2.6)

Then{P e,k}2N−1
k=0 is also a matrix CQF which satisfies Condition SA.

Proof. From (2.6), we obtainP ]e(ω) as

P ]e(ω)= P ]o(ω)M∗(ω),

whereM(ω) is defined in (2.3). The rest of the proof is similar to that for Theorem 1.

Remark 2.2. The matrix sequenceP e,k is given by

P e,k = P o,k11+P o,k+112, k = 0,1, . . . ,2N − 1. (2.7)

Remark 2.3. The essence of Theorems 1 and 2 is captured in Fig. 1. As an illustration,
suppose that we wish to obtain a length-(2N + 1) matrix CQF from a length-2N matrix
CQF {P e,k}2N−1

k=0 . First transform it to{P ]e,k}2N−1
k=0 with elementsP ]e,k = (p]ij (k))2i,j=1.

Then use these matrix elements to construct{P ]o,k}2Nk=0 in the manner shown in Fig. 1.
Finally, transform the resultant sequence to a length-(2N + 1) matrix CQF{P o,k}2Nk=0.
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3. EXPLICIT CONSTRUCTION OF MULTIWAVELET FUNCTIONS

Once a lowpass sequence{P k} is obtained, the corresponding highpass sequence
{Qk} needs to be constructed. For scalar wavelets, this problem has a simple solution:
the highpass sequence is obtained by order reversing and sign alternating the lowpass
sequence. For multiwavelets, Lawtonet al. [14] have proposed a general approach for
constructing the highpass sequence{Qk} using matrix extension techniques. However,
for orthonormal multiwavelet systems satisfying Condition SA, explicit formulations
are possible. We present in this section two explicit formulations for constructing the
highpass sequence{Qk} directly in terms of{P k}. We will mainly consider even-length
multiwavelet systems here as Theorem 1 can be used to generate odd-length multiwavelet
systems.

PROPOSITION 1. Let the lowpass sequence{P k}2N−1
k=0 be a matrix CQF satisfying

Condition SA. IfP kAP T2N−1−k−2i , k = 0,1, . . . ,N − i − 1, i = 0,1, . . . ,N − 1,
are symmetric matrices, then the highpass sequence{Qk}2N−1

k=0 can be obtained from
{P k}2N−1

k=0 as follows:

Qk = (−1)k+1P 2N−1−kA, k = 0,1, . . . ,2N − 1. (3.1)

Proof. We only need to prove that{P k}2N−1
k=0 and{Qk}2N−1

k=0 satisfy the PR conditions
(1.7) and (1.8). Fori ∈ Z,

2N−1−2i∑
k=0

P kQ
T
k+2i =

2N−1−2i∑
k=0

P k
(
(−1)k+2i+1P 2N−1−k−2iA

)T
=
(
N−1−i∑
k=0

+
2N−1−2i∑
k=N−i

)
P k(−1)k+2i+1AP T2N−1−k−2i

=
N−1−i∑
k=0

P k(−1)k+1AP T2N−1−k−2i

+
N−1−i∑
k=0

P 2N−1−2i−k(−1)kAP Tk .

Using the assumption thatP kAP T2N−1−2i−k are symmetric matrices for allk = 0,1, . . . ,
N − i − 1, i = 0,1, . . . ,N − 1, we have

2N−1−2i∑
k=0

P kQ
T
k+2i = 02×2, i ∈ Z. (3.2)

It is easy to show that{Qk}2N−1
k=0 given by (3.1) satisfies the PR condition (1.8).

Remark 3.1. It can be shown thatP kAP T2N−1−2i−k = P 2N−1−2i−kAP Tk is equivalent

to P
]
kS(P

]
2N−1−2i−k)T = P ]2N−1−2i−kS(P

]
k)
T for all k = 0,1, . . . ,N − i − 1, i =

0,1, . . . ,N − 1. Applying Proposition 1, we have

Q
]
k = (−1)kP ]2N−1−kS, k = 0,1, . . . ,2N − 1.
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Note that AS = −SA, i.e., AS is an antisymmetric matrix. As a consequence
of Proposition 1, symmetric–antisymmetric orthonormal multiscaling functions lead to
symmetric–antisymmetric orthonormal multiwavelet functions. This is because fork =
0,1, . . . ,2N − 1,

Qk = (−1)k+1P 2N−1−kA
= (−1)k+1SP kSA

= (−1)kSP kAS = SQ2N−1−kS.

We see that under the given condition of Proposition 1 the highpass sequence{Qk}2N−1
k=0

can be obtained easily from the lowpass sequence{P k}2N−1
k=0 in a manner similar to that

for the scalar case. Here, if{P 0,P 1, . . . ,P 2N−2,P 2N−1} is the lowpass sequence, then
{−P 2N−1A,P 2N−2A, . . . ,−P 1A,P 0A} is the corresponding highpass sequence.

As an example, the length-4 symmetric–antisymmetric orthonormal multiwavelet
systems constructed by Chui and Lian [1] and Jiang [12] satisfy the condition of
Proposition 1; thus their highpass sequences can in fact be obtained directly from the
lowpass sequences via (3.1). It should be pointed out, however, that not all lowpass
sequences will satisfy the condition given in Proposition 1. Consider the following
example:

EXAMPLE 3.1. Let

P 0=
[

4−√15
8

1
8

−4+√15
8

−1
8

]
, P 1=

[
4+√15

8
1
8

4+√15
8

1
8

]
,

P 2= SP 1S, andP 3= SP 0S. This length-4 lowpass sequence generates an orthonormal
MRA with symmetric–antisymmetric multiscaling functions. However, the highpass
sequence cannot be obtained directly via Proposition 1.

In the following, we will present another method for constructing highpass sequences
directly from lowpass sequences satisfying another condition.

PROPOSITION 2. Let the lowpass sequence{P k}2N−1
k=0 be a matrix CQF satisfying

Condition SA. If the sum of antidiagonal elements is zero for each of the matrices
P 2kAP

T
2k+2i+1− P 2k+1AP

T
2k+2i , k = 0,1, . . . ,N − i − 1, i = 0,1, . . . ,N − 1, then the

highpass sequence{Qk}2N−1
k=0 can be obtained from{P k}2N−1

k=0 as follows:

Q2k =−P 2k+1A, Q2k+1= P 2kA, k = 0,1, . . . ,N − 1. (3.3)

Proof. We only need to prove that{P k}2N−1
k=0 and{Qk}2N−1

k=0 satisfy the PR conditions
(1.7)–(1.8). Denote

Bk,i := P 2kAP
T
2k+2i+1−P 2k+1AP

T
2k+2i,

k = 0,1, . . . ,N − i − 1, i = 0,1, . . . ,N − 1. ApplyingP k = SP 2N−1−kS, we have

Bk,i =−SBTN−k−i−1,iS. (3.4)

This leads to
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2N−1−2i∑
k=0

P kQ
T
k+2i =−

N−1−i∑
k=0

Bk,i

=


−

N−i
2 −1∑
k=0

(Bk,i +BN−k−i−1,i ), N − i is even

−B N−i−1
2 ,i
−

N−i−1
2 −1∑
k=0

(Bk,i +BN−k−i−1,i ), N − i is odd.

Given that the sum of antidiagonal elements ofBk,i is zero, we can show from (3.4) that

Bk,i +BN−k−i−1,i =Bk,i − SBTk,iS = 02×2,

k = 0,1, . . . ,N − i − 1, i = 0,1, . . . ,N − 1. Furthermore, for the caseN − i is odd, (3.4)
holds fork = (N − i − 1)/2. Lettingn= (N − i − 1)/2, we have

Bn,i +Bn,i =Bn,i − SBTn,iS = 02×2.

ThereforeB(N−1−i)/2,i = 02×2.
Hence,

∑2N−1−2i
k=0 P kQ

T
k+2i = 02×2 for both even and oddN − i. For PR condition

(1.8), one needs only apply (3.3) to show that it is satisfied.

Remark 3.2. The lowpass sequence in Example 3.1 satisfies the condition of Proposi-
tion 2, and thus the corresponding highpass sequence can be obtained via (3.3).

Remark 3.3. The assumption of Proposition 2 implies that all diagonal elements of the
matricesP ]2kS(P

]
2k+2j+1)

T −P ]2k+1S(P
]
2k+2j )

T are equal and

Q
]
2k = P ]2k+1S, Q

]
2k+1=−P ]2kS, k = 0,1, . . . ,N − 1.

As in the case of Proposition 1, the highpass matrix sequence{Qk}2N−1
k=0 constructed

in Proposition 2 also satisfies the relationQk = SQ2N−1−kS. Hence the corresponding
multiwavelet functions also form a symmetric–antisymmetric pair.

In the previous section, we presented a relationship between even- and odd-length matrix
CQFs. The same relationship exists between the corresponding highpass matrix filters of
these matrix CQFs, and we can apply it to generate odd-length highpass matrix filters from
even-length highpass matrix filters.

PROPOSITION 3. Let {P e,k}2N−1
k=0 be an even-length matrix CQF satisfying Condition

SA, and{Qe,k}2N−1
k=0 be the corresponding highpass matrix filter satisfying(1.10) and

(1.11). Then one can construct an odd-length matrix CQF{P o,k}2Nk=0 satisfying Condition
SA using(2.5). The corresponding odd-length highpass matrix filter{Qo,k}2Nk=0 can be
obtained from{Qe,k}2N−1

k=0 using(2.5) (with symbolP replaced byQ throughout).

In the following, we will make use of Propositions 1, 2, and 3 to give explicit
formulations of highpass sequences{Qk} for symmetric–antisymmetric orthonormal
multiwavelet systems with support lengths of 2, 3, and 4.
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EXAMPLE 3.2. Let {φ,ψ} be a length-2 orthonormal multiwavelet system with its
lowpass matrix sequence satisfying Condition SA. Then this lowpass sequence is given by

P 0=
[

1 0

cosθ sinθ

]
, P 1=

[
1 0

−cosθ sinθ

]
.

HereP 0 andP 0 satisfy the conditions of both Propositions 1 and 2. Applying either
Proposition 1 or 2, we obtain the corresponding highpass matrices

Q0=
[

0 −1

−sinθ cosθ

]
, Q1=

[
0 1

sinθ cosθ

]
,

whereθ ∈ [0,2π)\{π2 , 3π
2 } for the transition operator to satisfy Condition E.

EXAMPLE 3.3. We can apply Proposition 3 to the above family of length-2 multi-
wavelet systems to obtain length-3 symmetric–antisymmetric orthonormal multiwavelet
systems with lowpass and highpass matrix sequences{P 0,P 1,P 2} and {Q0,Q1,Q2}
given by

P 0=
[ 1

2
1
2√

2
2 sinγ

√
2

2 sinγ

]
, P 1=

[
1 0

0 −√2cosγ

]

P 2=
[ 1

2 −1
2

−
√

2
2 sinγ

√
2

2 sinγ

]
, Q0=

[ 1
2

1
2

−
√

2
2 cosγ −

√
2

2 cosγ

]

Q1=
[−1 0

0
√

2sinγ

]
, Q2=

[ 1
2 −1

2√
2

2 cosγ −
√

2
2 cosγ

]
,

whereγ = π
4 − θ , θ ∈ [0,2π)\{π2 , 3π

2 }.
When the parameterγ = 2π − arcsin(

√
14/4), we obtain the length-3 symmetric–

antisymmetric orthonormal multiwavelet system constructed by Chui and Lian in [1].

EXAMPLE 3.4. For length-4 orthonormal symmetric–antisymmetric multiwavelet
systems, a possible lowpass matrix sequence is given by

P 0= β

1+ β2

[
β −1

β(β2τ2− 2τ − 1)/λ −(β2τ2+ 2β2τ − 1)/λ

]

P 1= 1

1+ β2

[
1 −β

(β2τ2+ 2β2τ − 1)/λ −β(β2τ2− 2τ − 1)/λ

]
,

P 2= SP 1S, P 3= SP 0S andλ= 1+ β2τ2. HereP k , k = 0,1,2,3, satisfy the condition
of Proposition 1. Hence we obtain the corresponding highpass matrix sequence:

Q0=
β

1+ β2

[ −1 −β
(β2τ2+ 2β2τ − 1)/λ β2(β2τ2− 2τ − 1)/λ

]

Q1=
1

1+ β2

[
β 1

−β(β2τ2− 2τ − 1)/λ −(β2τ2+ 2β2τ − 1)/λ

]
,

Q2= SQ1S andQ3= SQ0S.
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Whenβ =−(10−3
√

10)/(5
√

6−2
√

15) andτ = (45−9
√

15)/(15−6
√

10−10
√

6+
5
√

15), we obtain the length-4 symmetric–antisymmetric orthonormal multiwavelet
system constructed in [1].

4. ORTHONORMAL MULTIWAVELETS AND RELATED SCALAR WAVELETS

The aim of this section is to expound the relationship between symmetric–antisymmetric
orthonormal multiwavelet systems and scalar wavelets. We will show that scalar orthonor-
mal wavelets can be used to generate symmetric-antisymmetric orthonormal multiwavelet
systems with multiplicity 2. The following discussion will focus only on constructing even-
length multiwavelet systems as odd-length multiwavelet systems can be obtained through
Proposition 3.

A scalar sequence{ak}k∈Z is referred to as ascalar CQFif it satisfies∑
k

akak+2i = 2δi,0, i ∈ Z. (4.2)

We will only be dealing with scalar CQFs from orthonormal scalar wavelets and as such
these scalar CQFs will have at least one vanishing moment meaning that any such scalar
CQF{ak}k∈Z satisfies ∑

k

(−1)kak = 0. (4.3)

For the rest of this section, all scalar CQFs referred to will be assumed to have at least one
vanishing moment.

For any orthonormal symmetric–antisymmetric multiwavelet system satisfying Condi-
tion SA, the refinement masksP (ω) satisfies (1.12). This means thatP ](ω) atω = 0 have
the form

P ](0)= 1

2

[
1+ λ 1− λ
1− λ 1+ λ

]
,

with |λ|< 1. The value ofλ plays a very important role in the design of new multiwavelet
systems for signal processing, especially for image compression (see [21, 24]). The special
caseλ= 0 can arise as shown in the following.

Consider the lowpass matrix sequence{P k}2N−1
k=0 of any orthonormal multiwavelet

system satisfying Condition SA. By Lemma 1(ii), the transformed lowpass matrix
sequence{P ]k}2N−1

k=0 has the form

P
]
k =

[
a2k a2k+1

a4N−2k−1 a4N−2k−2

]
, k = 0,1, . . . ,2N − 1. (4.4)

That is, if one forms a scalar sequence{ak}4N−1
k=0 using the elements from the first rows of

the matricesP ]k , k = 0,1, . . . ,2N −1, then the second rows are obtained by reversing this
sequence. If this scalar sequence is a scalar CQF, then

2N−1∑
k=0

a2k = 1,
2N−1∑
k=0

a2k+1= 1,
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and this implies that

P ](0)=
[

1
2

1
2

1
2

1
2

]
,

and thusλ= 0. That is,P (0) or P ](0) is singular, when the related scalar sequence{ak}
is the lowpass sequence of an orthonormal scalar wavelet. This special case corresponds to
the good multifilter properties for discrete multiwavelet transforms discussed in [21] which
also demonstrated the importance of such properties for image compression purposes.

Assuming that{P ]k}2N−1
k=0 is a matrix CQF, the following conditions on{ak}4N−1

k=0 can be
derived:

4N−1−4i∑
k=0

akak+4i = 2δi,0, i ∈ Z (4.5)

4N−1−4i∑
k=0

aka4N−1−4i−k = 0, i ∈ Z (4.6)

4N−1∑
k=4i

aka4N−1+4i−k = 0, i ∈ Z. (4.7)

Clearly if a scalar sequence satisfies Eqs. (4.5)–(4.7), then the corresponding matrix CQF
can be constructed via (4.4). Note that a scalar CQF automatically satisfies (4.5), but not
the other two.

We will examine two possible methods of obtaining such sequences from the lowpass
sequences of scalar orthonormal wavelets.

4.1. Construction of Orthonormal Multiwavelets from Scalar Wavelets

Method 1. In the first method, we take a scalar CQF{hk}2N−1
k=0 and double its length

by inserting pairs of zeros to give{h0, h1,0,0, . . . , h2N−2, h2N−1,0,0} or {0,0, h0, h1,0,
0, . . . , h2N−2, h2N−1}. Clearly, either one of the new sequences satisfies Eqs. (4.5)–(4.7).
The following lemma contains this result.

LEMMA 4. Let {hk}2N−1
k=0 be a scalar CQF. Construct a length-4N sequence{ak}4N−1

k=0
as follows:

a4k = 1

2
(1− ξ)h2k, a4k+1= 1

2
(1− ξ)h2k+1, a4k+2= 1

2
(1+ ξ)h2k,

a4k+3= 1

2
(1+ ξ)h2k+1, ξ =±1, k = 0,1, . . . ,N − 1. (4.8)

Then this length-4N sequence is a scalar CQF.

The proof only involves verifying (4.2) and (4.3). This length-4N sequence can be
used to construct a length-2N orthonormal multiwavelet system as shown in the following
theorem.

THEOREM 3. Let {ak}4N−1
k=0 be a scalar CQF obtained from(4.8). Use it to construct

a matrix sequence{P k}2N−1
k=0 via (4.4). Then {P k}2N−1

k=0 is a matrix CQF and the
corresponding highpass matrix sequence{Qk}2N−1

k=0 can be constructed via Proposition2.
Furthermore, if the transition operatorTP satisfies Condition E, then{P k,Qk}2N−1

k=0
generates a length-2N orthonormal multiwavelet system satisfying Condition SA.
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Proof. As mentioned earlier, the scalar CQF{ak}4N−1
k=0 satisfies Eqs. (4.5)–(4.7), and

this implies that{P k}2N−1
k=0 is a matrix CQF. On the other hand, all diagonal elements of

P
]
2kS(P

]
2N−1−k−2j )

T −P ]2k+1S(P
]
2N−k−2j )

T are zeros; thus we can apply Proposition 2

to obtain the highpass matrix sequence{Qk}2N−1
k=0 .

Method 2. In the following, we give another approach to generate scalar sequences
satisfying Eqs. (4.5)–(4.7).

Consider a scalar sequence{bk}4N−1
k=0 where

b2k+1= τ (−1)k+1b2k, τ =±1, k = 0,1, . . . ,2N − 1. (4.9)

Such a sequence satisfies Eqs. (4.6) and (4.7) right away. Now if this scalar sequence
is a CQF, then Eq. (4.5) is also satisfied. It can be easily verified that the lowpass
sequence{P k} constructed via (4.4) satisfies the condition of Proposition 1, and thus the
corresponding highpass sequence can be obtained via (3.1). We express the second method
in the following theorem.

THEOREM 4. Let {bk}4N−1
k=0 be a scalar CQF satisfying Eq.(4.9). Use it to construct

a matrix sequence{P k}2N−1
k=0 via (4.4). Then {P k}2N−1

k=0 is a matrix CQF and the
corresponding highpass matrix sequence{Qk}2N−1

k=0 can be constructed via Proposition1.
Furthermore, if the transition operatorTP satisfies Condition E, then{P k,Qk}2N−1

k=0
generates a length-2N orthonormal multiwavelet system satisfying Condition SA.

Proof. The proof is similar to that for Theorem 3. We note that{P k}2N−1
k=0 in this case

satisfies the condition given in Proposition 1.

How does one generate a length-4N scalar CQF satisfying (4.9)? One can construct this
CQF from scratch using methods such as spectral factorization or lattice factorization. But
a simple and direct method, which exploits any existing length-2N scalar CQFs, can be
found in the following lemma.

LEMMA 5. Let{hk}2N−1
k=0 be a length-2N scalar CQF. Construct a length-4N sequence

{bk}4N−1
k=0 satisfyingb2k+1= τ (−1)k+1b2k, τ =±1, k = 0,1, . . . ,2N − 1, as follows:

b4k = 1

2
(h2k − τh2k+1), b4k+2= 1

2
(h2N−2−2k + τh2N−1−2k),

k = 0,1, . . . ,N − 1. (4.10)

Then this length-4N sequence is a scalar CQF. Conversely, let{bk}4N−1
k=0 be a length-4N

scalar CQF satisfying(4.9). Construct a length-2N sequence{hk}2N−1
k=0 as follows:

h2k = b4N−2−4k + b4k, h2k+1= τ (b4N−2−4k − b4k), k = 0,1, . . . ,N − 1.
(4.11)

Then the sequence{hk}2N−1
k=0 is a scalar CQF.

We will omit the proof of this lemma as it involves only verifying (4.2) and (4.3).
Given a length-2N scalar CQF, one can use either method 1 or 2 to construct a length-

2N matrix CQF. In fact, the relationship between the scalar and matrix CQFs given in
the above lemma is simple enough for us to directly give the lowpass matrix sequences
{P k}2N−1

k=0 in terms of the lowpass scalar sequence{bk}4N−1
k=0 for both methods 1 and 2. By

Lemma 5 and (1.14), we obtain for method 2,
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P 2k = 1

2

[
(1− τ )b4k + (1+ τ )b4N−4k−2 −(1+ τ )b4k + (1− τ )b4N−4k−2

−(1− τ )b4k + (1+ τ )b4N−4k−2 (1+ τ )b4k + (1− τ )b4N−4k−2

]

P 2k+1= 1

2

[
(1+ τ )b4k+2+ (1− τ )b4N−4k−4 −(1− τ )b4k+2+ (1+ τ )b4N−4k−4

−(1+ τ )b4k+2+ (1− τ )b4N−4k−4 (1− τ )b4k+2+ (1+ τ )b4N−4k−4

]
τ =±1. (4.12)

Note that the scalar sequence{bk} should be computed using the sameτ as appeared
together in (4.12).

For method 1, (4.8) and (4.4) are first used to obtainP k ’s in terms of{hk}. Then, in
order to illustrate a link with method 2, Eqs. (4.11) are used to express theseP k ’s in terms
of {bk}4N−1

k=0 . Whenξ =−1, we have

P 2k = 1

2

[
(1− τ )b4k + (1+ τ )b4N−4k−2 −(1+ τ )b4k − (1− τ )b4N−4k−2

−(1− τ )b4k − (1+ τ )b4N−4k−2 (1+ τ )b4k + (1− τ )b4N−4k−2

]

P 2k+1= 1

2

[
(1+ τ )b4k+2+ (1− τ )b4N−4k−4 (1− τ )b4k+2+ (1+ τ )b4N−4k−4

(1+ τ )b4k+2+ (1− τ )b4N−4k−4 (1− τ )b4k+2+ (1+ τ )b4N−4k−4

]
τ =±1.

The matrix CQFs forξ = 1 can be obtained from those constructed withξ = −1 by
interchangingP 2k with P 2k+1, k = 0,1, . . . ,N − 1.

Clearly for both methods, the two elements in each column of everyP k have the same
magnitude. It can be shown that this is also true for the corresponding highpass sequences
constructed using Propositions 1 and 2. Furthermore, if one has constructed a lowpass
sequence using method 2 forτ =−1, then a lowpass sequence for method 1 withξ =−1
can be obtained easily by flipping the sign of the(1,2) elements of allP k ’s for method 2.
For the case whenτ = 1, one only needs to flip the sign of the(2,1) elements.

Remark 4.2. For method 2, the matrix CQFs obtained with the two possible values ofτ

are related: if{P k}2N−1
k=0 is obtained with one value ofτ , then{SP kS}2N−1

k=0 is obtained with
the other value ofτ .

Remark 4.3. For method 1, every coefficient matrix of the matrix CQFs obtained is
singular.

For symmetric–antisymmetric orthonormal multiwavelet systems considered in this
section, there are two associated approximation order: one is for the multiscaling functions
of the multiwavelet system (MAP), and another is for the corresponding scaling function
of the related (length-4N ) scalar wavelet (SAP).

Remark 4.4. If the matrix CQF{P k} has a MAP ofm and a SAP ofn, then the matrix
CQFs{SP k}, {P kS}, and{SP kS} have their MAP and SAP at least equal to 1. It can be
easily shown that{SP k} always has the same SAP as{P k}, and that{SP kS} always has
the same MAP as{P k}. The MAP for{SP k}, the SAP for{SP kS}, as well as the MAP and
SAP for {P kS} need not be the same as those for{P k}, except when these MAPs/SAPs
are equal to 1.
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4.2. Length-4 Multiwavelets Derived from Scalar Wavelets

Here we illustrate the process of deriving length-4 multiwavelet systems from length-4
scalar orthonormal wavelets. Daubechies [5] gave an example of an one-parameter length-4
orthonormal scalar wavelet with the lowpass sequence{hk}3k=0 given by

h0= ν(ν − 1)

ν2+ 1
, h1= 1− ν

ν2+ 1
, h2= 1+ ν

ν2+ 1
, h3= ν(ν + 1)

ν2+ 1
.

This sequence is a scalar CQF, and the parameterν can be used for various filter design
purposes.

We consider the derivation using method 2 first. Applying (4.10) to{hk}3k=0 results in
the length-8 scalar CQF{bk}7k=0 where

b0= (ν − 1)(ν + τ )
2(1+ ν2)

, b1= −τ (ν − 1)(ν + τ )
2(1+ ν2)

, b2= (1+ ν)(1+ ντ)
2(1+ ν2)

b3= τ (1+ ν)(1+ ντ)
2(1+ ν2)

, b4= (1+ ν)(1− ντ)
2(1+ ν2)

, b5= −τ (1+ ν)(1− ντ)
2(1+ ν2)

b6= (ν − 1)(ν − τ )
2(1+ ν2)

, b7= τ (ν − 1)(ν − τ )
2(1+ ν2)

.

We then apply (4.12) to obtain the corresponding length-4 matrix lowpass sequence
{P k}3k=0 where

P 0= 1

2(1+ ν2)

[
(ν − 1)2 τ (1− ν2)

τ (ν − 1)2 ν2− 1

]

P 1= 1

2(1+ ν2)

[
(ν + 1)2 τ (1− ν2)

−τ (ν + 1)2 1− ν2

]
P 2= SP 1S and P 3= SP 0S.

(4.13)

From the above length-4 matrix CQF for method 2, one obtains the matrix CQFs
for method 1 through flipping signs of appropriate matrix elements and other CQFs by
applying Lemma 2. Thus one can construct a family of length-4 orthonormal multiwavelet
systems (SA4) through varying the value of the parameterν for different filter design
goals [20].

Let us consider a few specific members of this family. The matrix CQF given in (4.13)
has both MAP and SAP equal to 1. The parameterν can be used to increase either
approximation order to two. To increase MAP to two, for bothτ = ±1, we require
ν = (−2± √19)/3. To increase SAP to two, we requireν = ±√15/5 for τ = 1, and
ν =±√15/3 for τ =−1.

Figure 2b shows the multiscaling functions of SA4 member (SA4a) constructed under
method 2 with SAP= 2 and MAP= 1 (τ = 1 andν =√15/5). The length-4 and length-8
scalar scaling functions are also shown in Fig. 2a.

One can generate another SA4 member (SA4b) by applying case (i) of Lemma 2 to
SA4a. Figures 2c and 2d depict SA4b. This member has SAP= 2 and MAP= 1. The
corresponding length-8 scalar scaling function for SA4b is actually a left-right flip of that
for SA4a.

Applying case (iii) of Lemma 2 gives a third member (SA4c) which appears in Figs. 3e
and 3f. As expected, here the multiscaling functionφ1 is the same as that for SA4a,
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FIGURE 2
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FIGURE 3
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whereasφ2 is a left-right flip of that for SA4a. However, the SAP for SA4c is 1 and not 2
as for SA4a, due to the fact that the corresponding length-8 scalar wavelets are no longer
the same as that for SA4a. The transition operators for SA4a, SA4b, and SA4c have been
verified to satisfy Condition E via numerical techniques.

It is interesting to note the changes in the regularities of the scaling functions involved
as the construction proceed from length-4 to length-8 scalar scaling functions and to the
length-4 multiscaling functions. Using estimates for Sobolev regularity [11, 23], in the case
of SA4a, the regularities change from 0.7075 for length-4 scalar, to 1.5094 for length-8
scalar, and finally to 0.9919 for SA4a itself. For SA4b, the changes are from 0.3390 to
1.5094 and finally to 0.2485. For SA4c, the changes are from 0.7075 to 0.2360 and finally
to 0.9919.

For any of the above length-4 orthonormal multiwavelet systems, one can apply
Proposition 3 to obtain a length-5 orthonormal multiwavelet system.

4.3. Even-Length Multiwavelets Derived from Scalar Wavelets

In this section, we will consider the construction of length-2N multiwavelet systems
from related length-2N scalar wavelets. Parameterized representations of length-2N scalar
CQFs are first given using lattice factorization. Examples of multiwavelet systems are then
given forN = 3.

Let H0(z) andH1(z) be thez-transform of the lowpass and highpass filters associated
with an orthonormal scalar wavelet. The polyphase components ofH0(z) will be denoted
byH00(z) andH01(z), that is,

H0(z)=H00
(
z2)+ z−1H01

(
z2)= 1

2

2N−1∑
k=0

hkz
−k.

The polyphase components give the even and odd indexed coefficients ofH0(z) separately.
Similarly, the polyphase components ofH1(z) will be denoted byH10(z) andH11(z) so
that

H1(z)=H10
(
z2)+ z−1H11

(
z2)= 1

2

2N−1∑
k=0

gkz
−k,

wheregk = (−1)kh2N−1−k , k = 0,1, . . . ,2N − 1. The polyphase matrix of the scalar
wavelet filter is then defined as

HN
p (z)=

[
H00(z) H10(z)

H01(z) H11(z)

]
. (4.14)

An important result by Vaidyanathan [22] is that the polyphase matrixHN
p (z) can be

written as

HN
p (z)=

1√
2
R0

N−1∏
j=1

D(z)Rj (4.15)
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where

D(z)=
[

1 0

0 z−1

]
, and Rj =

[
cosαj −sinαj

sinαj cosαj

]
, j = 0,1, . . . ,N − 1.

This lattice parameterization givesHN
p (z) as a function of angles. Note thatHN

p (z) is of
degreeN − 1. Therefore the filtersH0(z) andH1(z) are of degree 2N − 1. For the filter
to be orthonormal and have at least one vanishing moment, it is necessary thatH0(1)= 1
andH0(−1) = 0. Equivalently, these conditions can be expressed in terms of the angles
αj , j = 0,1, . . . ,N − 1, such that

N−1∑
j=0

aj = 2nπ + π
4
, n ∈ Z. (4.16)

It is clear that we still haveN − 1 degrees of freedom in the remainingα’s. From
this (N − 1)-parameter scalar sequence, we then construct length-2N matrix CQFs using
methods 1 and 2.

In the following presentation, we find it convenient to replace the parametersαi with
βi = tanαi , i = 0,1, . . . ,N − 1, when expressing matrix filter coefficients associated with
the multiwavelet systems.

SA6 multiwavelet systems.ForN = 3, takingα0 = 2nπ + π
4 − α1− α2, β1= tanα1,

β2= tanα2, andγ = (1+β2
1)(1+β2

2) results in the length-6 scalar CQF with coefficients:

h0= (β1+ β2− β1β2+ 1)/γ, h1=−(β1+ β2+ β1β2− 1)/γ

h2= β1(β1− 1)/(1+ β2
1), h3= β1(β1+ 1)/(1+ β2

1)

h4= β2(β1+ β2+ β1β2− 1)/γ, h5= β2(β1+ β2− β1β2+ 1)/γ .

Applying Lemma 5, we obtain the length-12 scalar CQF with coefficients:

b0=
(
(β1+ β2)(τ + 1)+ (β1β2− 1)(τ − 1)

)
/(2γ )

b2= β2
(
(β1+ β2)(τ + 1)− (β1β2− 1)(τ − 1)

)
/(2γ )

b4= β1
(
β1− 1− τ (β1+ 1)

)
/
(
2(1+ β2

1)
)

b6= β1
(
β1− 1+ τ (β1+ 1)

)
/
(
2(1+ β2

1)
)

b8= β2
(
(β1+ β2)(−τ + 1)+ (β1β2− 1)(τ + 1)

)
/(2γ )

b10=
(
(β1+ β2)(−τ + 1)− (β1β2− 1)(τ + 1)

)
/(2γ ),

andb2k+1 = τ (−1)k+1b2k, k = 0,1, . . . ,5. From this length-12 scalar sequence{bk}11
k=0,

methods 1 and 2, and Lemma 2 are then used to construct the SA6 family of
symmetric–antisymmetric orthonormal multiwavelet systems. For members constructed
under method 2 withτ =−1, the coefficient matrices are

P 0= 1

(β2
1 + 1)(β2

2 + 1)

[
−β1β2+ 1 −τ (β1+ β2)

−τ (β1β2− 1) β1+ β2

]

P 1= β2

(β2
1 + 1)(β2

2 + 1)

[
β1+ β2 −τ (−β1β2+ 1)

−τ (β1+ β2) β1β2− 1

]
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TABLE 1
For Three Members of SA6 Families of Symmetric–Antisymmetric Orthonormal Multi-
wavelets, the Required Conditions on the Parametersβ1 and β2 for Achieving Various Com-
binations of Multiwavelet Approximation Order (MAP) and Scalar Wavelet Approximation

Order (SAP) are Shown.

(SAP,MAP) Condition on parameters

SA6a (1,3) 17β4
1 + 256β3

1 + 1298β2
1 + 2816β1 + 705= 0,

β2 = −1
9984(1088β3

1 + 9856β2
1 + 40256β1 + 41600).

SA6b (2,2) β2
2 − 16β2+ 1= 0,
β1= 8− β2.

SA6c (3,1) β4
2 − 32β3

2 + 258β2
2 − 544β2 + 129= 0,

β1 = −1
34 (β

3
2 − 28β2

2 + 163β2− 28).

P 2= β1

β2
1 + 1

[
β1 τ

β1τ −1

]
,

P k = SP 5−kS, k = 3,4,5. The highpass sequence{Qk}5k=0 is given by (3.1). This branch
of SA6 family, with two parameters yet to be determined, has both MAP and SAP at least
equal to 1. Table 1 shows the conditions imposed onβ1 andβ2 for members of this branch
to achieve three possible combinations of approximation orders. Up to four possible pairs
of values ofβ1 andβ2 are available for each combination of approximation orders. Among
the possible pairs, the one which yields multiscaling functions with highest regularity is
selected for each multiwavelet system. Figure 3 shows the graphs of the multiscaling func-
tions so obtained for three members of this branch of SA6. The transition operators of all
associated refinement masks have been verified to satisfy Condition E through direct com-
putation. Although the graphs of these three sets of multiscaling functions look alike, their
estimates of the Sobolev regularity differ: 1.5034, 1.4986, and 0.9995 for SA6a, SA6b, and
SA6c, respectively. For any of the above length-6 orthonormal multiwavelet systems, one
can apply Proposition 3 to obtain a length-7 orthonormal multiwavelet system.

5. CONCLUSIONS

In this paper, we studied a class of orthonormal multiwavelet systems with multiplicity 2
consisting of pairs of symmetric–antisymmetric multiscaling and multiwavelet functions.
We first showed how a length-2N multiwavelet system can be constructed from a
length-(2N + 1) multiwavelet system and vice versa. Next, we presented two explicit
formulations for the direct construction of multiwavelet functions from their corresponding
scaling functions. Examples of families of parameterized orthonormal multiwavelet
systems and their relationships with some other multiwavelet systems reported in
previous expositions were also given. We then investigated the relationship between a
symmetric–antisymmetric orthonormal multiwavelet system and its related orthonormal
scalar wavelet. There, we presented two methods for the construction of symmetric–
antisymmetric orthonormal multiwavelet systems from a given orthonormal scalar wavelet.
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For each of the methods, we also showed how length-2N multiwavelet systems can be
derived from related length-2N scalar wavelets. Examples were given for length-4 and
length-6 multiwavelet systems. It is noteworthy that the SA4a multiwavelet system was
shown in [21] to perform better in image compression than the GHM multiwavelet, the
Chui and Lian’s length-4 multiwavelet, and both length-4 and length-8 Daubechies scalar
wavelets.
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