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For compactly supported symmetric—antisymmetric orthonormal multiwavelet
systems with multiplicity 2, we first show that any length-2multiwavelet
system can be constructed from a len@i + 1) multiwavelet system and
vice versa. Then we present two explicit formulations for the construction of
multiwavelet functions directly from their associated multiscaling functions. This
is followed by the relationship between these multiscaling functions and the scaling
functions of related orthonormal scalar wavelets. Finally, we present two methods
for constructing families of symmetric—antisymmetric orthonormal multiwavelet
systems via the construction of the related scalar wavelet000 Academic Press

1. INTRODUCTION

The study of multiwavelets was first initiated by Goodnetnal. [8] in 1993, and
since then multiwavelets have received considerable attention from the wavelets research
communities both in theory [1, 2, 6-11, 15-18] and in applications such as signal
compression and denoising [19, 21, 24]. The main motivation for multiwavelets is that
they can simultaneously possess desirable properties such as symmetry, orthogonality,
and shorter support for a given approximation order, which are not possible in any real-
valued scalar wavelet [4]. One of the earliest and most popularly used multiwavelets
with multiplicity 2 is the GHM multiwavelet which was constructed by Geronietal.
[6, 7] using fractal interpolation. The multiscaling functions of the GHM multiwavelet
are both symmetric and orthonormal. Later, by imposing Hermite interpolating conditions,
Chui and Lian [1] constructed symmetry—antisymmetric orthonormal multiwavelets with
particular emphasis on the maximum order of polynomial reproduction and gave examples
for length-3 and length-4 multiwavelets. In our preceding paper [21], we introduced
another class of symmetric-antisymmetric orthonormal multiwavelets which possess a new
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property called the good multifilter properties (GMP) and demonstrated that they can be
useful for image compression. In this paper, we will further the study of this class of
multiwavelets and expound its relationship with related orthonormal scalar wavelets.

We begin with some basic theory and notations to be used throughout this paper. For
a multiwavelet system with multiplicity, the vectorg (x) = (¢1(x), ..., ¢, (x)T is a
compactly supported orthonormal scaling vector generating a multiresolution analysis
(MRA) {V;};ez of L%(R) with

.cVoaacVocvic---CL3R),

whereV; :={f: f(277.) € Vo}, j € Z. The vector has the following properties:
— ¢ satisfies aefinement equation

¢(x) =) Prp(2x —k), (1.1)

keZ

for some finite sequendd;} of r x r matrices.
— The integer shift$g; (- —k):k€Z, i =1,...,r} constitute an orthonormal basis
of Vo.

Associated withp is an orthonormal multiwavelet vectgr(x) = (¥1(x), ..., ¥ (x))T
with the following properties:

— There exists a finite sequen@,} of r x r matrices such that

Y =) Qrpx —h). (1.2)
keZ
— The integer shift§y; (- — k) : k€ Z, i =1, ..., r} constitute an orthonormal basis

of Wo, whereWy is the orthogonal complement &f in V1.

We will refer to ¢;'s and y;’s as the multiscaling and multiwavelet functions,
respectively, and the matrix sequendd?;} and {Q,} as the lowpass and highpass
sequences, respectively. We also say that the {@jr Q,} (or {¢,¥}) generates an
orthonormamultiwvavelet system

The Fourier transforms of sequendd?;} and{Q,}, i.e., P(w) := %Zkel Pre ik
and Qo) := 33", Qre /%@, j = /=1, will be referred to as the refinement mask
and the wavelet mask, respectively. The orthonormality ahd+ implies the following
perfect reconstruction (PR) conditions,

P(0)P* (@) + P(w+1) P (w+71)=1,., (1.3)
P(0)Q*(w)+ P(w+7)Q* (w+1m) =0y, (1.4)
Q@) 0% () + Qw+m) Q" (w+m) =1, (1.5)

where the superscript denotes the conjugate transpose. In addition, the above three
equations are equivalent to the following equations,

> PePlL oy =2501, (1.6)
keZ
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Z Pk QZ+2,' = Yrxr (1.7)
keZ
Z Qk Q/{+2i = 281’,01r><r, (1.8)
keZ

fori € Z, where

5 {1, i=j
"/ 710,  otherwise.
Specifically, the sequencgP;} which satisfies (1.3) or (1.6) is called a conjugate
quadrature filter (CQF). In order to distinguish it from the usual CQF in the scalar setting,
we will refer to{ P} as amatrix CQFthroughout this paper.
The transition operator faP (w) is defined as

Tp H(w) = P(%)H(%) P*(%) + P(% +n)H(% +7r) P*(% +7r). (1.9)

This operator is useful for characterizing the orthonormality of he refinement function
vector¢ is orthonormal if and only if P;} is a matrix CQF and its transition operator
Tp satisfiesCondition E(see [17]). We say that a square mathik (or a linear operator)
satisfies Condition E if its spectral radipgM) < 1 with 1 being the only eigenvalue of
M on the unit circle and it is simple.

In this paper, we will focus on a class of symmetric—antisymmetric orthonormal
multiwavelet systems with multiplicity = 2, whose members have finite and real-valued
lowpass sequences’k},fzo satisfying the following:

Py and P are nonzero matrices (1.10)
Py=SP;_;S, k=0,1,...,L, whereS$ = diag(1, —1) (2.12)

P0) =

10
], A <1 (1.12)
0 A

Collectively, we refer to the above conditions@gsndition SAor easy referencing.
The second condition (1.11) implies that the corresponding multiscaling functions form
a symmetric—antisymmetric pair as shown in the following [1]:

P, =SP;_;S, k=0,1,...,L
& Pw) =SP(—w)Se /L®
= s =CD"tpL-x), i=12 (1.13)

The orthonormality of also implies thatbAl(O) =1 and¢»(0) = 0.

The third condition (1.12) is a necessary condition [3, 13] for any lowpass sequence
satisfying (1.10) and (1.11) (or the corresponding multiscaling function vector) to generate
a MRA.

Note that for{Pk}]fzo, the transition operatdfp is a linear operator ofil; , whereH
is the space of alt x » matrices whose entries are trigonometric polynomials such that
their Fourier coefficients are supported #aL, L].
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We shall adopt the following notations and assumptions throughout for ease of
exposition. First we define the following orthogonal matrices:

U 1 (1 -1 S 1 0 A 0 1
V2|1 1| 0 -1’ |1 ol
There are frequent occasions where we apply similarity transformations to given matrices
using the transition matriU and then the reverse transformations. We shall use the
superscripf for denoting the matrix obtained by applying the similarity transformation
with U as the transition matrix. The same superscript will be used to represent the elements

of the resultant matrix as well as the multiscaling functions and the multiwavelet functions.
For example, we have

Pi=UPU, (1.14)

wherePy = (pi;(k))?,_ andP? = (p?j k)23
The rest of the paper is organised as follows. In Section 2, we establish several results
on matrix CQFs, in particular, the relationship between even- and odd-length matrix CQFs
satisfying Condition SA. In Section 3, two explicit formulations which can be used to
derive the highpass sequeri@, } directly from the corresponding lowpass sequeiieg
are given. In Section 4, the relationship between orthonormal scalar wavelets and a class of
symmetric—antisymmetric orthonormal multiwavelet systems is first established. We then
provide a procedure for constructing families of multiwavelet systems from related scalar

wavelets with examples given for length-4 and length-6 multiwavelet systems.

2. SOME RESULTS ON MATRIX CQFs

The purpose of this section is to present several results on matrix CQFs satisfying
Condition SA. In particular we give an intrinsic characterization of the relationship
between even- and odd-length matrix CQFs. We will prove that lengtra2d length-

(2N + 1) matrix CQFs satisfying Condition SA can be obtained from one another. To this
end, we find it convenient to change the matrix CQF and its refinement mask using the
orthogonal matrixXU . First of all, asU is orthogonal, it is clear [1] that i{ka},f:O is matrix

CQF, then{P,ji},f:0 is also a matrix CQF.

Noting thatA = USU 1, the following lemma on the matrix sequenc{ds{},fzo and
{Uﬁ},fzo and their corresponding masks can be easily established.

LEmMA 1. The following four statements are equivatent

(i) Pr=SP._S,k=0,1,...,L.
(i) Pi=AP] ,A k=01, L.
(iiiy P(w)=SP(—w)Se Lo,
(iv) P%(w)= AP (—w)Ae Lo,
From a given matrix CQF{Pk},fZO, satisfying Condition SA, one can generate other

matrix CQFs satisfying Condition SA. The following lemma gives three such possible
ways.

LEMMA 2. Let {Pk},f:O be a matrix CQF satisfying Condition SA. Then each of the
following matrix sequences,
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(i) {SPi}i_o,
(i) {PrS}_q
(i) {(SPiSIE,,
also forms a matrix CQF satisfying Condition SA.

Proof. Here we show the proof for case (i). The proof for the other two cases is similar.
LetR;,:=SP;,k=0,1,...,L. Then

L—2i L—-2i
> Ri(Rip2)" =5 ( > PkP,ZM.) S=280l22 i€,
k=0 k=0

which means tha{tRk},fzo forms a matrix CQF.
Next, the sequenc{ERk},f=O clearly satisfies condition (1.10). For condition (1.11), we
have

R, =SP;,=S(SP._;S)=SR;_S, k=0,1,...,L.
Finally, R(w) = SP(w) and

R(0)=SP(0) = Lo
©=sPO=| |

where |A| < 1. Thus, Condition (1.12) is satisfied. The matrix CQRk},f:O satisfies
Condition SA as a resultl

Case (iii) in the above lemma is actually obtained by applying a similarity transformation
of eachP with S as the transition matrix. This corresponds to reversing the order of matrix
coefficients in the matrix CQF.

Next we will establish the relationship between the even-length and odd-length matrix
CQFs satisfying Condition SA. Before we proceed further, consider the following lemma.

LEMMA 3. Let {Pk}]fﬁo be an odd-length lowpass sequence satisfying Condition SA.
Then one of the following statements holds,
a2 O
a1 O '

Proof. The CQF condition (1.6) and the Condition SA impB/oPgN = 0«2 and
P,y = SPoS, respectively. Consequently, we have

0
i pPi=|

], or (i) Py=

0 a2

whereay = p11(0) — p21(0) andaz = p11(0) + p21(0).

PH0) = p3,(0),  p3,(0)=p3,00, and  p11(0)p21(0) — p12(0) p22(0) = O.

Clearly, there are two possible cases:

— p12(0) = p11(0), p22(0) = p21(0). This implieng has the form in (i).
— p12(0) = —p11(0), p22(0) = — p21(0). This implieng has the form in (ii).H
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Note that if we precede the similarity transformation®§ using the matrixCU with
another similarity transformation using transition matsixi.e., P: = USPoSUL, then
applying the result for the second case actually gives risd’t%)caf the formin Lemma 3(i).
Hence, we will say that an orthonormal multiscaling function vegtds unique if its
lowpass sequendeP,} is unique up to the similarity transformation #f’s with one of
the following three orthogonal matricés — S, or —I2.>. In what follows, for odd-length
orthonormal multiwavelet systems satisfying Condition SA, we always assume(”;ﬂr&ts
the form in Lemma 3(i).

Let E,;, denote the matrixaael, a,b €[1,2], ande; denote thekth unit column
2-vector.

THEOREM 1. Let{Pe,k}fﬁgl be an even-length matrix CQF which satisfies Condition

SA. Construct the matrix sequer'{defi’k},fﬁo from {Pf,k},fggl using the following rules

Pl E1o, k=0
Pi,k = Pg,k—lEZ,l + Pg’kEl,z, O<k<2N (2.1)
P2,2N—1E2»1’ k=2N.

Then{Po,k}fﬁo is also a matrix CQF which satisfies Condition SA.

Proof. From the definition ong,k in (2.1), we obtain

P} (0) = PX(0)M (), (2.2)
where
M(w) = o 1 (2.3)
Y=o o '

is a unitary matrix. To show thaTPO,k}fﬁo is a matrix CQF is equivalent to showing that
Pﬁ(w) satisfies (1.3). We have

Pi(@)(Pi(@)* + Ph(w + 1) (Ph(w+ )"
= PL0)M(0)M*(0)(PL(@)* + Pi(w+ )M (0 + 1) M* (0 + 1) (Pi(w + m))*
= P{(0)(PL(@)* + Pi(w + 1) (Pi (0 +7))*
=I2x2.
We note here that
AM (0) = e /°M(—w)A. (2.4)
Applying Lemma 1(iv) forPﬁ(w), we have from (2.2) and (2.4)
Pi(0) = AP (—w)Ae ™/ CN=De M (1)
= APg(—w)e_jwM(—w)Aejwe_jZNw
= AP} (—o)M(—w)Ae /2N
= AP} (—w)Ae /2N,

Therefore, by Lemma ]{,Po,k},fﬁo satisfies condition (1.11). Given th#, (0) has the
form (1.12), one can obtaiR,(0) = P.(0)S = diag(1, —1), where|r| < 1. It is easy to
see that (1.10) is satisfied. Th{BO,k},fZO satisfies Condition SAR
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P, P, S
Pgl(o) Pl{z(o) P‘{l(l) PIiz(l) p'{1(2N" 1) sz(QN“ 1)
Ph(0)  pha(0) | phi (1) pla(1) Aﬁﬂ4>p%w—n
o PhO) [P0 P Phen -1 [PheNn-1) ¢
0 Ph0)||ph(0) k(1) || Pha(1) PN -1) | |pheN-1) o
N e’
P, P, Plon

FIG. 1. Relationship between even- and odd-length matrix CQFé;k} and{PE - Note here identical
columns are aligned vertically and marked with arrows.

Remark 2.1 DenoteA1 = (E11— E12+ E21— E22)/2, Ao = (E11+ E12 — E21 —
E»7)/2. Under the assumption of Theorem 1, the matrix sequ(‘aﬂgg},fﬁo is given by

P, oA, k=0,
Poik=1< Per-1A1+ P, A2, O0<k<2N, (2.5)
P,.on_1A1, k=2N.

THEOREM 2. Let{P,, k}k ', be an odd-length matrix CQF which satisfies Condition
SA. Construct the matrix sequer{deIj k},fN L from {Pti k} o using the following rules

Pi =P Eo1+P., E1p,  k=01..2N-1 (2.6)

Then{P, ;}2V; is also a matrix CQF which satisfies Condition SA.

Proof. From (2.6), we obtaid’ﬁ(a)) as
P} () = P (0)M*(w),
whereM () is defined in (2.3). The rest of the proof is similar to that for Theorerli1.

Remark 2.2 The matrix sequenck, i is given by

P,iy=P,rA1+ P, r+1A2, k=0,1,...,2N — 1. (2.7)

Remark 2.3 The essence of Theorems 1 and 2 is captured in Fig. 1. As an illustration,
suppose that we wish to obtain a lengfiv + 1) matrix CQF from a Iength -® matrix
CQF (P, x)2Y52. First transform it to{ P’ JENST with eIementng P = (pl] k)2 ;_;.
Then use these matrix elements to constr{tR:i’ } i~ In the manner shown in Fig. 1.
Finally, transform the resultant sequence to a len@tki— 1) matrix CQF{P(,,k},%ZO.
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3. EXPLICIT CONSTRUCTION OF MULTIWAVELET FUNCTIONS

Once a lowpass sequen¢®;} is obtained, the corresponding highpass sequence
{0,} needs to be constructed. For scalar wavelets, this problem has a simple solution:
the highpass sequence is obtained by order reversing and sign alternating the lowpass
sequence. For multiwavelets, Lawten al. [14] have proposed a general approach for
constructing the highpass sequeri@,} using matrix extension techniques. However,
for orthonormal multiwavelet systems satisfying Condition SA, explicit formulations
are possible. We present in this section two explicit formulations for constructing the
highpass sequendd,} directly in terms of{ P;}. We will mainly consider even-length
multiwavelet systems here as Theorem 1 can be used to generate odd-length multiwavelet
systems.

PROPOSITION 1. Let the lowpass sequenQE’k}ZN ! be a matrix CQF satisfying
Condition SA. IkaAPZN 1-k—2i» k=0,1,. —-i—-1i=01...,N — 1,
are symmetric matrices, then the highpass seque{rQ;QZN ! can be obtained from
{P)2N 51 as follows

0, = (D" 1Py 1 A, k=0,1,...,2N — 1. (3.1)

Proof. We only need to prove thd®}2¥;* and{ @, }2";* satisfy the PR conditions
(1.7) and (1.8). Fori € Z,

2N-1-2i 2N-1-2i .
Y PQla= Y. Pi((-DMFTPoy 1 2iA)
= k=0

N—1-i 2N-1-2i
_ + >Pk( 1)k+21+1AP L s
k=0 k=N—i
N—1—i
= p (_1)k+lAP2TN—1—k—2i
k=0
N—-1—

Z on-1-2ik(~DFAP].
Using the assumption theﬂkAPZN_l_zl._k are symmetric matrices for atl=0, 1
N-i—-1,i=0,1,...,N -1, we have

2N—-1-2i

Y PiQli5 =022 i€l (3.2)
k=0

It is easy to show tha{tQk}ZN ! given by (3.1) satisfies the PR condition (1.88.

Remark 3.1 It can be shown thaPkAPZN 1-2i—x = Pon—1-2i— kAPk is equivalent
to PiS(Poy 1 o )" = Poy 1 o S(PDT for all k =0,1,. —i—1,i=
0.1,..., N — 1. Applying Proposition 1, we have

0l =(-1FP5, . S, k=0,1,...,2N—1.
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Note that AS = —SA, i.e.,, AS is an antisymmetric matrix. As a consequence
of Proposition 1, symmetric—antisymmetric orthonormal multiscaling functions lead to
symmetric—antisymmetric orthonormal multiwavelet functions. This is becausk $or
0,1,...,2N —1,

Q= (=D 1Poy_14A
=(-DF1spP,sA
= (-1*SPLAS=SQoy_1.4S.

We see that under the given condition of Proposition 1 the highpass sec{t@[}éggl
can be obtained easily from the lowpass sequéig?;* in a manner similar to that
for the scalar case. Here, {iPo, P1, ..., Poy_2, Poy_1} is the lowpass sequence, then
{—Pav_1A, Poy_2A, ..., —P1A, PoA} is the corresponding highpass sequence.

As an example, the length-4 symmetric—antisymmetric orthonormal multiwavelet
systems constructed by Chui and Lian [1] and Jiang [12] satisfy the condition of
Proposition 1; thus their highpass sequences can in fact be obtained directly from the
lowpass sequences via (3.1). It should be pointed out, however, that not all lowpass
sequences will satisfy the condition given in Proposition 1. Consider the following
example:

ExAMPLE 3.1. Let

4-J/15 1 4415 1
8 8 8 8

Po= , Pi= ,
0 —4+4/15 -1 ! 4+V15 1
8 8 8 8

P,=SP1S,andP3= SPoS. This length-4 lowpass sequence generates an orthonormal
MRA with symmetric—antisymmetric multiscaling functions. However, the highpass
sequence cannot be obtained directly via Proposition 1.

In the following, we will present another method for constructing highpass sequences
directly from lowpass sequences satisfying another condition.

PROPOSITION 2. Let the lowpass sequen¢®)2";* be a matrix CQF satisfying
Condition SA. If the sum of antidiagonal elements is zero for each of the matrices
PZkAP2k+21+1 P2k+1AP2k+21,k 0,1,....N—i—1,i=0,1,...,N — 1, then the
highpass sequend@, }2¥;* can be obtalned fromPk}ZN L as follows

QZkZ_PZk-‘rlA’ Q2k+l=P2kA’ kZO,l,,N—l (33)

Proof. We only need to prove thd®}2¥;* and{ @, }2 ;! satisfy the PR conditions
(2.7)—(2.8). Denote

By = PZkAng+2i+1 - P2k+1AP£k+2i’
k=0,1,...,N—i—1,i=0,1,...,N — 1. Applying Py = SPon—_1-«S, we have
Bii=—SBY_;_;i_1;S. (3.4)

This leads to
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2N—-1-2i N—1—i
r — .
> PrQia=— ) Bui
k=0 k=0
Noi g
- Z (Bk,i + BN—k—i—1,i)s N —iiseven
_ k=0
- N—zi—l_l
—By-i1,— Z (Bk,i + BN—k—i—1.i), N —iis odd.
o=l :
k=0

Given that the sum of antidiagonal elementdgf; is zero, we can show from (3.4) that
Bii+ By_i—i—1i =By — SB[ ;S =022,

k=0,1,...,N—i—1,i=0,1,..., N — 1. Furthermore, for the casé — i is odd, (3.4)
holds fork = (N —i — 1)/2. Lettingn = (N —i — 1)/2, we have

B+ B,i=B,;—SB],S=00

ThereforeB (y_1— i)y2i = O2x2.
Hence ZZN =4 py Q1 5 = 0252 for both even and odav — i. For PR condition
(1.8), one needs only apply (3.3) to show that it is satisflid.

Remark 3.2 The lowpass sequence in Example 3.1 satisfies the condition of Proposi-
tion 2, and thus the corresponding highpass sequence can be obtained via (3.3).

Remark 3.3 The assumption of Proposition 2 implies that all diagonal elements of the
matricesPﬁZkS(PﬁZHZjH)T — PﬁZHlS(PnZHZj)T are equal and

Q5 =P .S, Qy. . =-PyS.  k=0,1.. N-L1
As in the case of Proposition 1, the highpass matrix seque@gé";* constructed
in Proposition 2 also satisfies the relatiéh, = S Q-y_1_xS. Hence the corresponding
multiwavelet functions also form a symmetric—antisymmetric pair.

In the previous section, we presented a relationship between even- and odd-length matrix
CQFs. The same relationship exists between the corresponding highpass matrix filters of
these matrix CQFs, and we can apply it to generate odd-length highpass matrix filters from
even-length highpass matrix filters.

PROPOSITION 3. Let{P,}?V;* be an even-length matrix CQF satisfying Condition
SA, and{Q, k},fN ! pe the corresponding highpass matrix filter satisfyigl0) and
(1.11) Then one can construct an odd-length matrix CQF(,,k},fZO satisfying Condition
SA using(2.5). The corresponding odd-length highpass matrix fiI{Qo’k}fﬁo can be
obtained from{ @, , }2Y 5! using(2.5) (with symbolP replaced byQ throughouy.

In the following, we will make use of Propositions 1, 2, and 3 to give explicit
formulations of highpass sequencg@,} for symmetric—antisymmetric orthonormal
multiwavelet systems with support lengths of 2, 3, and 4.
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ExXAMPLE 3.2. Let{¢, v} be a length-2 orthonormal multiwavelet system with its
lowpass matrix sequence satisfying Condition SA. Then this lowpass sequence is given by

1 0
Po= . ) P =

cosf sinf

1 0
—cosy sing |’

Here Po and Pg satisfy the conditions of both Propositions 1 and 2. Applying either
Proposition 1 or 2, we obtain the corresponding highpass matrices

0 0 -1 0 0 1
7 | _sing coss |’ 17 lsing cow |
whered € [0, 2m)\{7, 37T} for the transition operator to satisfy Condition E.

ExamMPLE 3.3. We can apply Proposition 3 to the above family of length-2 multi-
wavelet systems to obtain length-3 symmetric—antisymmetric orthonormal multiwavelet
systems with lowpass and highpass matrix sequefiBesP1, P2} and {Qq, Q1, 05}

given by
1 1
lgh ol el
@smy %S ny 0 _ﬁCOSJ/
b S
P;= ' Co=
—Zsiny %smyl i L@cosy _gcosy]
-1 0 % _%
0= : ; Q2= s 32 ’
0 Vasiny ¥fcosy —Y%=cosy
Wherey=%_9’96[0’2@\{%’%{}.

When the parametey = 27 — arcsin+/14/4), we obtain the length-3 symmetric—
antisymmetric orthonormal multiwavelet system constructed by Chui and Lian in [1].

EXAMPLE 3.4. For length-4 orthonormal symmetric—antisymmetric multiwavelet
systems, a possible lowpass matrix sequence is given by

b B B 1

0T 1582 | p(B2r2 =2t —1)/n  — (%2 +28% — 1)/A
p_ 1 1 —8
YT B (B2 4282 —)/h —B(BRE—2e—1/n |’

P>=SP1S, P3=SPoS andi = 1+ B%t2. Here Py, k =0, 1, 2, 3, satisfy the condition
of Proposition 1. Hence we obtain the corresponding highpass matrix sequence:

0= B -1 -B

07 14 82 | (822 +28% — 1)/n  B2(B%c2 — 2t — 1)/
0,1 B 1

VU182 | g2 — 2t —)/n — (B2 4282 — 1/ |

0,=S0;1SandQ3=SQoS.
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Wheng = — (10— 3v/10)/(5v/6 — 2/15) andr = (45— 9+/15) /(15— 6+/10— 106+
5,/15), we obtain the length-4 symmetric—antisymmetric orthonormal multiwavelet
system constructed in [1].

4. ORTHONORMAL MULTIWAVELETS AND RELATED SCALAR WAVELETS

The aim of this section is to expound the relationship between symmetric—antisymmetric
orthonormal multiwavelet systems and scalar wavelets. We will show that scalar orthonor-
mal wavelets can be used to generate symmetric-antisymmetric orthonormal multiwavelet
systems with multiplicity 2. The following discussion will focus only on constructing even-
length multiwavelet systems as odd-length multiwavelet systems can be obtained through
Proposition 3.

A scalar sequenciy Jxez is referred to as acalar CQFif it satisfies

Zakak+2i = 25;‘,0, i €. (4.2)
k

We will only be dealing with scalar CQFs from orthonormal scalar wavelets and as such
these scalar CQFs will have at least one vanishing moment meaning that any such scalar
CQF{ax}rez satisfies

> (—Dfg =0. (4.3)
k

For the rest of this section, all scalar CQFs referred to will be assumed to have at least one
vanishing moment.

For any orthonormal symmetric—antisymmetric multiwavelet system satisfying Condi-
tion SA, the refinement mask3(w) satisfies (1.12). This means th&t(w) atw = 0 have
the form

1+1 1-—-2
1-x 142

with [A| < 1. The value of. plays a very important role in the design of new multiwavelet
systems for signal processing, especially for image compression (see [21, 24]). The special
caseir = 0 can arise as shown in the following.

Consider the lowpass matrix sequenid®}2¥;" of any orthonormal multiwavelet
system satlsfylng Condition SA. By Lemma 1(ii), the transformed lowpass matrix
sequencé¢P}}2V;1 has the form

1
20) =
P (0)—2

a a
Pl = 2k 2+ k01, . 2N-—1. (4.4)

AAN-2k—1 AAN—2k—2

That is, if one forms a scalar sequeriag}‘w ! using the elements from the first rows of
the matncesP,%, k=0,1,...,2N —1, then the second rows are obtained by reversing this

sequence. If this scalar sequence is a scalar CQF, then

2N-1 2N-1

Z ay =1, Z az+1=1
k=0 k=0
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and this implies that
2
# _
P-(0) = ll

i)

and thus. = 0. That is, P (0) or P*(0) is singular, when the related scalar sequefagé

is the lowpass sequence of an orthonormal scalar wavelet. This special case corresponds to
the good multifilter properties for discrete multiwavelet transforms discussed in [21] which
also demonstrated the importance of such properties for image compression purposes.

NI NI

Assuming that P;}2¥; 1 is a matrix CQF, the following conditions diy )5 can be
derived:
AN—1-4i
> ararya =250, ie (4.5)
k=0
AN-1-4i
Z araan—-1—ai—r =0, i€’ (4.6)
aN-1
Z araan-1+4i—k =0, i€Z. 4.7)
k=4i

Clearly if a scalar sequence satisfies Eqs. (4.5)—(4.7), then the corresponding matrix CQF
can be constructed via (4.4). Note that a scalar CQF automatically satisfies (4.5), but not
the other two.

We will examine two possible methods of obtaining such sequences from the lowpass
sequences of scalar orthonormal wavelets.

4.1. Construction of Orthonormal Multiwavelets from Scalar Wavelets

Method 1. In the first method, we take a scalar CQR}2Y;* and double its length
by inserting pairs of zeros to giMéo, %1, 0,0, ..., haoy—2, hoy—1, 0,0} or {0, O, ho, k1, O,
0,...,hon_2, hoy—1}. Clearly, either one of the new sequences satisfies Egs. (4.5)—(4.7).
The following lemma contains this result.

LEMMA 4. Let{h}2V;* be a scalar CQF. Construct a leng#hv sequencéa )™yt

as follows
1 1 1
asg = E(l—E)th, gyl = 5(1—5)h2k+1, g2 = 5(1+ E)hox,

1
Then this lengthtN sequence is a scalar CQF.

The proof only involves verifying (4.2) and (4.3). This length-4&equence can be
used to construct a lengthV2orthonormal multiwavelet system as shown in the following
theorem.

THEOREM 3. Let {ak}‘”\"l be a scalar CQF obtained froif#.8). Use it to construct
a matrix sequence{Pk}kN "1 via (4.4). Then {Pk}ZN 1is a matrix CQF and the
corresponding highpass matrix sequer{lggc}k ! can be constructed via Propositi@
Furthermore, if the transition operatofp satlsfles Condition E, thefiPy, Qk}ZN !
generates a lengt@A orthonormal multiwavelet system satisfying Condition SA.
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Proof. As mentioned earlier, the scalar CQ@}‘W ! satisfies Egs. (4.5)-(4.7), and
this implies that{Pk}ZN lisa matr|x CQF. On the other hand, all diagonal elements of
PﬁZkS(PZN 1 2]) 2k+lS(P IN—k—2j )T are zeros; thus we can apply Proposition 2
to obtain the highpass matrix sequer{\@{}m lm

Method 2. In the following, we give another approach to generate scalar sequences
satisfying Egs. (4.5)—(4.7).

Consider a scalar sequeniég} ;"™

where
bas1=1(=D)" by, =41 k=0,1,...,2N — 1. (4.9)

Such a sequence satisfies Eqgs. (4.6) and (4.7) right away. Now if this scalar sequence
is a CQF, then Eq. (4.5) is also satisfied. It can be easily verified that the lowpass
sequencég P} constructed via (4.4) satisfies the condition of Proposition 1, and thus the
corresponding highpass sequence can be obtained via (3.1). We express the second methoc
in the following theorem.

THEOREM 4. Let {bk}fN ! be a scalar CQF satisfying E¢4.9). Use it to construct
a matrix sequence Py}t via (4.4). Then {Pk}ZN 1'is a matrix CQF and the
corresponding highpass matrix sequer{lggc} ! can be constructed via Proposmdn
Furthermore, if the transition operato?p satlsfles Condition E, thefPy, Qk}k:O
generates a lengt@A orthonormal multiwavelet system satisfying Condition SA.

2N1

Proof. The proofis similar to that for Theorem 3. We note thRj.};", " in this case

satisfies the condition given in Propositionl.

How does one generate a length-4calar CQF satisfying (4.9)? One can construct this
CQF from scratch using methods such as spectral factorization or lattice factorization. But
a simple and direct method, which exploits any existing lengths2alar CQFs, can be
found in the following lemma.

LEMMA 5. Let{hk}lfN ! be alength2N scalar CQF. Construct a lengthn sequence
(b} Nyt satisfyingboir = t (=D by, T = +1,k=0,1,..., 2N — 1, as follows

1 1
by = E(th — Tha41), bags2 = é(hZN—Z—Zk +thaoy—1-2),
k=0,1,...,N—1 (4.10)

Then this lengtttN sequence is a scalar CQF. Conversely,{ht}fN ! be a lengthdN
scalar CQF satisfying4.9). Construct a lengt2nN sequencq:hk} L as follows

hor = ban—_2—ak + by, hok+1 =T (ban—2—ar — bar), k=0,1,...,N -1
(4.11)

2Nl

Then the sequendéy};_, ~ is a scalar CQF.

We will omit the proof of this lemma as it involves only verifying (4.2) and (4.3).

Given a length-2 scalar CQF, one can use either method 1 or 2 to construct a length-
2N matrix CQF. In fact, the relationship between the scalar and matrix CQFs given in
the above lemma is simple enough for us to directly give the lowpass matrix sequences
{P}2N 51 in terms of the lowpass scalar sequetigg i, * for both methods 1 and 2. By
Lemma 5 and (1.14), we obtain for method 2,
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Py 1 l A—0)ba + A+ )ban—ak—2 —A+71)bap +(1— T)b4N—4k—2‘|
2 | —(A—0)ba+ A+ 1)bany—ak—2 A+ 1)bar + (1 — 0)ban—_sx—2
Poor— 1| A+ 0baks2+ (A= D)ban-ae—a  —(1 = Dbag2+ (1 + T)b4N—4k—4‘|
2 | =L+ 0)bags2+ A —1)ban—ak—s (1 —T)baks2+ (1+ 1)ban—sk—4
T =41 (4.12)

Note that the scalar sequenfig} should be computed using the sames appeared
togetherin (4.12).

For method 1, (4.8) and (4.4) are first used to obtBjys in terms of{A;}. Then, in
order to illustrate a link with method 2, Eqgs. (4.11) are used to express thésa terms
of {b)Y5 L. Wheng = —1, we have

—(1—=D)bgy — A+ )bay—ax—2 A+1T)bag + (1 —1)ban—ar—2
p A+ D)bggyo+ A —1)ban—ar—4 (L —T)bagi2+ (L4 T)ban—ax—4
2%+1= 3
2| (14 0)bsir2+ (A —0)ban—sk—4 (1 —T)bagy2+ (1 + 1)ban—sak—a
T==1.

p 1 [ A—-0)bay + A+ )ban—ak—2 —A+7T)ba — (1 — T)b4N—4k—2]
% =7
2

1

The matrix CQFs forf = 1 can be obtained from those constructed with- —1 by
interchangingP  with Po.1,k=0,1,..., N — 1.

Clearly for both methods, the two elements in each column of ePgrizave the same
magnitude. It can be shown that this is also true for the corresponding highpass sequences
constructed using Propositions 1 and 2. Furthermore, if one has constructed a lowpass
sequence using method 2 fo= —1, then a lowpass sequence for method 1 With —1
can be obtained easily by flipping the sign of {ie2) elements of allP;’s for method 2.

For the case when= 1, one only needs to flip the sign of th2 1) elements.

Remark 4.2 For method 2, the matrix CQFs obtained with the two possible values of

are related: if P }2;* is obtained with one value af, then{S P, §)2"* is obtained with
the other value of.

Remark 4.3 For method 1, every coefficient matrix of the matrix CQFs obtained is
singular.

For symmetric—antisymmetric orthonormal multiwavelet systems considered in this
section, there are two associated approximation order: one is for the multiscaling functions
of the multiwavelet system (MAP), and another is for the corresponding scaling function
of the related (length-A) scalar wavelet (SAP).

Remark 4.4 If the matrix CQF{ P} has a MAP ofn and a SAP of:, then the matrix
CQFs{SP;}, {P;S}, and{SP;S} have their MAP and SAP at least equal to 1. It can be
easily shown thatS P} always has the same SAP @8}, and that{S P, S} always has
the same MAP a§P;}. The MAP for{S P}, the SAP for{SP; S}, as well as the MAP and
SAP for{P; S} need not be the same as those {fBy,}, except when these MAPs/SAPs
are equal to 1.



ORTHONORMAL MULTIWAVELETS AND SCALAR WAVELETS 273

4.2. Length-4 Multiwavelets Derived from Scalar Wavelets

Here we illustrate the process of deriving length-4 multiwavelet systems from length-4
scalar orthonormal wavelets. Daubechies [5] gave an example of an one-parameterlength-4
orthonormal scalar wavelet with the lowpass seunh;;P;’:O given by

n _v-=1 1= 14w _v(v+1)
R =2 2T 2y SR

This sequence is a scalar CQF, and the parametan be used for various filter design
purposes.

We consider the derivation using method 2 first. Applying (4.10{)&1&(}220 results in
the length-8 scalar CQpx}/_, where

bo— v—D+71) - —T(w—1+7) by — 1+v)(1+v7)
2(1+v2) 2(1+v2) ’ 2(1+v2)

ba t(14+v)(1+v7) A+ v)A—v7) be — —t(1l+v)(1—v7)

T T 2a4v 0 YT T 2040y T 2a+1?)

b_(v—l)(v—r) b_r(v—l)(v—r)

= o1+ [ TR

We then apply (4.12) to obtain the corresponding length-4 matrix lowpass sequence
{Pi}3_, where

Py 1 (v —1)? r(1—v2)]
20+0v?) |t(v =12 v2-—-1

poo_ L v+D? - v%] (4.13)
214+v2) |—z(v+ 12 12

P>=SP1S and P3=SPpS.

From the above length-4 matrix CQF for method 2, one obtains the matrix CQFs
for method 1 through flipping signs of appropriate matrix elements and other CQFs by
applying Lemma 2. Thus one can construct a family of length-4 orthonormal multiwavelet
systems (SA4) through varying the value of the parametéor different filter design
goals [20].

Let us consider a few specific members of this family. The matrix CQF given in (4.13)
has both MAP and SAP equal to 1. The parametezan be used to increase either
approximation order to two. To increase MAP to two, for bath= +1, we require
v = (=2 £ +/19)/3. To increase SAP to two, we require= ++/15/5 for r = 1, and
v=+15/3fort = —1.

Figure 2b shows the multiscaling functions of SA4 member (SA4a) constructed under
method 2 with SAR= 2 and MAP= 1 (r = 1 andv = +/15/5). The length-4 and length-8
scalar scaling functions are also shown in Fig. 2a.

One can generate another SA4 member (SA4b) by applying case (i) of Lemma 2 to
SAda. Figures 2c and 2d depict SA4b. This member has SAPand MAP= 1. The
corresponding length-8 scalar scaling function for SA4b is actually a left-right flip of that
for SA4da.

Applying case (iii) of Lemma 2 gives a third member (SA4c) which appears in Figs. 3e
and 3f. As expected, here the multiscaling functipnis the same as that for SA4a,



SHEN, TAN, AND THAM

274

-1

-1.5

FIGURE 2

N T T
b - llllllllll
A}
\\
—~~ -
o ceemeen
S’
o]
1 1 L 1 -~ 1 1 1 1 1 1 - 1 1 1 L
0 - ] (o] 0 " 0 4] - 0 (o] 4] - 0 | 0 - 10 (o] 4] -
- o 0 _ . - o Q _ . - o 3 _
T T . T y T T T T T T T T
<0 ¥9
'_.'_. 10 - Y 10 r u-.
g0 ugu} ¢ R
- - et e
| ) w% \\\.-||| nlll.wum\-.iuu.-...|n.¢r||.
86 , 00| < i
1 Peo 4% 1::..nl < II....J.)kﬂ.nun..-n._.-uull'.rll
P 1 .~ 283
' L _ ~N <0 o
| emmm=m”] ! N [ >
Teenza ’ o '
= G s |83 )
Zooca N — o
o . 00
Sy il 00 N
)
{ _ | |
. . . . . o . . . . o . X ,
N O ®©® 0 ¥ o o0 W [ 0 - 0 [) 0 ) - 0 o) [
- o o o o o_ - o] n_u - o n_u



ORTHONORMAL MULTIWAVELETS AND SCALAR WAVELETS 275

15
1 f
0.5t :
0 7
05 Vo
T T=-1
al v/ B=-8.05157
B,=21.18189
1. . . . .
% 1 2 3 4 5
(a)
15
1t — ¢1 p
! 0
0.5t '
] T
-0.5} v
‘I ,' 7=-1
| v B,=-7.98725
B,=15.93725
15 1 2 3 4 5
(b)
15
1 L
0.5t ,
0 T
: N
0.5} Lo
Vo T=-1
4l V) B=-7.93371
B,=20.87484
1% 1 2 3 4 5

FIGURE 3



276 SHEN, TAN, AND THAM

whereasp; is a left-right flip of that for SA4a. However, the SAP for SA4c is 1 and not 2

as for SA4a, due to the fact that the corresponding length-8 scalar wavelets are no longer
the same as that for SA4a. The transition operators for SA4a, SA4b, and SA4c have been
verified to satisfy Condition E via numerical techniques.

It is interesting to note the changes in the regularities of the scaling functions involved
as the construction proceed from length-4 to length-8 scalar scaling functions and to the
length-4 multiscaling functions. Using estimates for Sobolev regularity [11, 23], in the case
of SA4a, the regularities change from 0.7075 for length-4 scalar, to 1.5094 for length-8
scalar, and finally to 0.9919 for SA4a itself. For SA4b, the changes are from 0.3390 to
1.5094 and finally to 0.2485. For SA4c, the changes are from 0.7075 to 0.2360 and finally
to 0.9919.

For any of the above length-4 orthonormal multiwavelet systems, one can apply
Proposition 3 to obtain a length-5 orthonormal multiwavelet system.

4.3. Even-Length Multiwavelets Derived from Scalar Wavelets

In this section, we will consider the construction of lengthi-thultiwavelet systems
from related length-® scalar wavelets. Parameterized representations of lengtcalar
CQFs are first given using lattice factorization. Examples of multiwavelet systems are then
given forN = 3.

Let Ho(z) and H1(z) be thez-transform of the lowpass and highpass filters associated
with an orthonormal scalar wavelet. The polyphase componentg@f will be denoted
by Hoo(z) and Ho1(z), that is,

Ho(z) = Hoo(z%) + 2~ *Hox(2%) = > >zt

The polyphase components give the even and odd indexed coefficidiijs&ofseparately.
Similarly, the polyphase components 8i(z) will be denoted byH10(z) and H11(z) SO
that

12N
Hi(z) = Hio(z%) + 2 1 Haa(2%) = > > az
k=0

where gx = (=1)fhoy_1-x, k =0,1,...,2N — 1. The polyphase matrix of the scalar
wavelet filter is then defined as

(4.14)

Y () [Hoo(z) Hlo(Z)] ‘

Hoi(z) H11(2)

An important result by Vaidyanathan [22] is that the polyphase m&w((z) can be
written as

N-1

1
H(z)= ﬁRojlj[lD(z)Rj (4.15)
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where

1 0
0 1!

cosa; —sina;

D(z)=[ ] and R, =

) ., j=01..N-1
SN COSu

This lattice parameterization givdﬁlp}’ (z) as a function of angles. Note thﬂg (z) is of
degreeN — 1. Therefore the filterglp(z) and H1(z) are of degree ® — 1. For the filter

to be orthonormal and have at least one vanishing moment, it is necessabphat= 1

and Ho(—1) = 0. Equivalently, these conditions can be expressed in terms of the angles
«j, j=0,1,...,N — 1, such that

N-1 -
Z}U=%n+z, nel. (4.16)
j=0

It is clear that we still haveVv — 1 degrees of freedom in the remaininés. From
this (N — 1)-parameter scalar sequence, we then construct lengtmatrix CQFs using
methods 1 and 2.

In the following presentation, we find it convenient to replace the parametexsith
Bi =tang;, i =0,1,..., N — 1, when expressing matrix filter coefficients associated with
the multiwavelet systems.

SA6 multiwavelet systemsFor N = 3, takingap = 2nm + 7 — a1 — a2, f1 = tanaa,
B2 =tanag, andy = (1+ ﬂf)(l+ ,3%) results in the length-6 scalar CQF with coefficients:

ho=(BL+ P2—P1f2+1)/y, hi=—(B1+ B2+ P1B2—D/y
ha=B1(B1—1)/(1+ B, hs=B1(B1+1)/(1+ D)
ha=p2(B1+ P2+ P1B2— 1)/, hs = Bo(B1+ B2 — P12+ 1)/y.

Applying Lemma 5, we obtain the length-12 scalar CQF with coefficients:

bo= ((B1+ B2)(r + 1)+ (B1f2 — D(t — 1)) /(2y)

b2 = B2((BL+ B2)(T + 1) — (B1B2 — D(z — 1)) /(2y)
ba=pr(fr—1—7(B1+1)/(2(1+ D))
be=pr(P1—1+7(B1+1)/(2(1+ D))
bg=B2((B1+ B2)(—T+ 1)+ (B1B2 — D(r + 1)) /(2y)
bio= ((B1+ B (—7 +1) — (B2 — D(t + 1)) /(2y).

andby1 = t(—1) by, k=0,1,...,5. From this length-12 scalar sequeribg}il,,
methods 1 and 2, and Lemma 2 are then used to construct the SA6 family of
symmetric—antisymmetric orthonormal multiwavelet systems. For members constructed
under method 2 withh = —1, the coefficient matrices are

Po— 1 —B1B2+1  —t(B1+ B2)
BE+D(B5+1) |—t(Brf2—1) P+ B2
B2 B1+ B2 —1(=p1B2+1)

Pi= o 1
BI+DB;+D [—t(Br+ B2) p1p2—1
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TABLE 1
For Three Members of SA6 Families of Symmetric—Antisymmetric Orthonormal Multi-
wavelets, the Required Conditions on the Parameterg; and B, for Achieving Various Com-
binations of Multiwavelet Approximation Order (MAP) and Scalar Wavelet Approximation
Order (SAP) are Shown.

(SAP,MAP) Condition on parameters

SA6a (1,3 175 + 25663 + 129882 + 2816681 + 705=0,

B2 = o55(108853 + 985657 + 402568, + 41600.

SA6b 2,2 B3 — 166, +1=0,
B1=8—pa.
SA6C (3,1 By — 3283 + 25882 — 5448, +129=0,

B1= 32 (B3 — 2863 + 1638, — 29).

1 | B T ]

Py= )

BE+1 |prr -1
P, =SPs_;S,k=3,4,5. The highpass sequen{oQk},f:O is given by (3.1). This branch
of SA6 family, with two parameters yet to be determined, has both MAP and SAP at least
equal to 1. Table 1 shows the conditions impose@pand g, for members of this branch
to achieve three possible combinations of approximation orders. Up to four possible pairs
of values off1 andg, are available for each combination of approximation orders. Among
the possible pairs, the one which yields multiscaling functions with highest regularity is
selected for each multiwavelet system. Figure 3 shows the graphs of the multiscaling func-
tions so obtained for three members of this branch of SA6. The transition operators of all
associated refinement masks have been verified to satisfy Condition E through direct com-
putation. Although the graphs of these three sets of multiscaling functions look alike, their
estimates of the Sobolev regularity differ; 1.5034, 1.4986, and 0.9995 for SA6a, SA6b, and
SAG6c, respectively. For any of the above length-6 orthonormal multiwavelet systems, one
can apply Proposition 3 to obtain a length-7 orthonormal multiwavelet system.

5. CONCLUSIONS

In this paper, we studied a class of orthonormal multiwavelet systems with multiplicity 2
consisting of pairs of symmetric—antisymmetric multiscaling and multiwavelet functions.
We first showed how a lengthA2 multiwavelet system can be constructed from a
length{2N + 1) multiwavelet system and vice versa. Next, we presented two explicit
formulations for the direct construction of multiwavelet functions from their corresponding
scaling functions. Examples of families of parameterized orthonormal multiwavelet
systems and their relationships with some other multiwavelet systems reported in
previous expositions were also given. We then investigated the relationship between a
symmetric—antisymmetric orthonormal multiwavelet system and its related orthonormal
scalar wavelet. There, we presented two methods for the construction of symmetric—
antisymmetric orthonormal multiwavelet systems from a given orthonormal scalar wavelet.
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For each of the methods, we also showed how lengthr2ultiwavelet systems can be
derived from related lengthA2 scalar wavelets. Examples were given for length-4 and
length-6 multiwavelet systems. It is noteworthy that the SA4a multiwavelet system was
shown in [21] to perform better in image compression than the GHM multiwavelet, the
Chui and Lian’s length-4 multiwavelet, and both length-4 and length-8 Daubechies scalar
wavelets.
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